ATM2/ATM3 CT_Tracing
Example

User Guide

SUMMARY: This document describes the settings, functionality, and code flow of the
CT_Tracing example code running on an Atmosic-based Bluetooth LE system

Atmosic

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060

Table of Contents

Atmosic

1. Overview 7
1.1 Quick Start 7
2. Application States 12
2.1 MMI events and behavior 13
2.2 Sub states 15
2.3 Compile options for initial state 16
3. Software Modules 16
3.1 Module description 16
3.2 Module hierarchy 17
4. Message Sequence Chart 17
4.1 Power on, MMI on, and MMI off 17
4.2 Bluetooth LE init. and start connectable pairing advertising (CAVD) 18
4.3 Connectable pairing advertising (CADV) timeout 20
4.4 Start beacon advertising activity 21
4.5 Update iBeacon status field of adv. payload 23
4.6 Connection indication 24
4.7 Disconnection indication 25
4.8 GAP Pairing 26
5. Hardware Setup 27
5.1 PIN Setup 27
5.2 Configure flash layout 28
5.3 Flash sector layout 29
5.4 Interface board for console log 31
6. Application defined flash NVDS 32
6.1 Device unique parameters (Tag ID:0xAA) 32
6.2 Configuration parameters (Tag ID: OXAB) 32
6.3 Apply the change 33
CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 2

Atmosic

6.4 Update device UUID of Advertisement payload 33

7. Default Parameters 34

7.1 Advertisements 34

7.2 GAP Parameter 35

7.2.1 Connection Parameter Negotiation 35

7.2.2 Generic Access Device Name 36

7.2.3 Generic Access Appearance 36

7.2.4 Security Level 36

7.3 Scan parameter 37

8. Button 38

9. Hibernation Management 40

10. GATT Service Create/Read/Write 41

10.1 Create GATT service 41

10.2 Handle ATT Read 42

10.3 Handle ATT Write 43

11. Address Modes 44

12. Scan Device Flow 46

12.1 Create iBeacon Advertiser 47

12.2 Beacon ID 48

12.3 Beacon Logger Process 49

13. Bluetooth LE GATT Services 51

13.1 Command handler 53

13.2 Software Real Time Clock 56

13.3 Retrieve Beacon Logger 57

13.4 MTU size 57

13.5 Notify Packet Format to Report Beacon Logger 58

14. Console Log for Beacon Record Dump 59

14.1 Show Current Record List in RAM 60

14.2 Retrieve Flash Record Beacon List 60

14.3 Leave and Return - Nearby Timeout Case 62
CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 3

Atmosic

14.4 Leave and Return - Still In Nearby Timeout 62

15. OTA 63
15.1 Enable Atmosic OTA Service 63
15.2 ATM2202 Flash Layout 63
15.3 Build Firmware for EVK 64
15.4 SW Virtual Record Pool for OTA 64

Revision History 65

List of Figures

Figure 1 - Random Address Message in Console Log

Figure 2 - Booting Message in Console Log

Figure 3 - MMI On Message in Console Log

Figure 4 - Connectable Advertisement Timeout Message in Console Log

Figure 5 - CT_Tracing Configuration Setting Message in Console Log

Figure 6 - Enable Scan Message in Console Log

Figure 7 - Scanned iBeacon Message in Console Log

Figure 8 - iBeacon Payload

Figure 9 - Connection Message in Console Log

Figure 10 - Bluetooth LE GATT Service in Mobile APP

Figure 11 - MMI Transitions

Figure 12 - Detailed State Transitions

Figure 13 - Module Hierarchy

Figure 14 - Power On, MMI On and MMI Off

Figure 15 - Bluetooth LE Initialization and Advertising Activity Creation

Figure 16 - Advertising Activity Created to Start

Figure 17 - Connectable Pairing Advertising Timeout

Figure 18 - Start iBeacon and Create Advertising Activity

Figure 19 - Start iBeacon and Start Advertising Activity

Figure 20 - Update iBeacon Advertising Payload Periodically

Figure 21 - Connection Indication

Figure 22 - Disconnection Indication

Figure 23 - Pairing Request Indication

Figure 24 - Flash Layout Message

Figure 25 - Default Layout of ATM2202

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 4

Atmosic

Figure 26 - Default Layout of ATM22x1

Figure 27 - UART Console Pin of Interface Board

Figure 28 - iBeacon Data Payload

Figure 29 - Keil Configuration Wizard for Advertisement Parameter
Figure 30 - Connection Parameter Setting

Figure 31 - Keil Configuration Wizard for GAP Parameters
Figure 32 - Keil Configuration Wizard for Scan Parameters
Figure 33 - Register User Input to top_mmi_input.c

Figure 34 - Sequence Chart of CT_button and top_mmi_input
Figure 35 - GATT Callbacks

Figure 36 - Service Creation

Figure 37 - GATT Read

Figure 39 - Scan Device Report Filter Policy

Figure 39 - Scan Device Report Filter Policy

Figure 40 - iBeacon Advertiser Clone Method

Figure 41 - iBeacon Advertiser Create New Method
Figure 42 - device_info_t Structure for Scan

Figure 43 - Beacon Logger Process

Figure 44 - Activation and Advertising Parameter Service
Figure 45 - Beacon Logger Service

Figure 46 - BLS Command Characteristic

Figure 47 - Cfg. Command Characteristic

Figure 48 - Common Command Payload Format

Figure 49 - Sub Command Value

Figure 50 - Command Profile

Figure 51 - Software Real Time Clock

Figure 52 - Enable Notification Property

Figure 53 - Request MTU

Figure 54 - Notification Beacon Report

Figure 55 - Beacon Report Format

Figure 56 - Show Current Record List in RAM

Figure 57 - Retrieve Flash Record Beacon List

Figure 58 - Leave and Return - Nearby Timeout Case

Figure 59 - Leave and Return - Still in Nearby Timeout Case

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 5

Atmosic

Figure 60 - Flash Layout for OTA
Figure 61 - SW Virtual Record Pool for OTA

List of Tables

Table 1 - MMI State Descriptions

Table 2 - MMI Events and Behavior

Table 3 - Compile Option for Booting

Table 4 - Module Description

Table 5 - PIN Setup

Table 6 - Comparison of Targets

Table 7 - Flash NVDS Settings

Table 8 - Tag ID OXAB - APP_CONFIG Flash NVDS Settings
Table 9 - device_info_t Structure for Scan
Table 10 - Bluetooth LE GATT Service UUID
Table 11 - Sub Command Table

Table 12 - Beacon Report Parameters

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 6

Atmosic

1. Overview

This application note describes the settings, functionality, and code flow of the
CT_Tracing example code running on an Atmosic-based Bluetooth LE system such as
a contact tracing wristband. This Bluetooth LE system will send advertisements, perform
scan, record scan results into flash, and initiate connectable advertisement for a Mobile
APP connection. When a connection is made, the Mobile APP can retrieve the beacon
logger record using GATT services. Advertising interval, scan duration and period, etc.
can be configured using the GATT service interface. Mobile APP can overwrite the
default settings.

Note: CT _tracing application uses iBeacon payload format. To test the scanning
function, please use any iBeacon device or create iBeacon using Mobile APP. Refer to
the Create iBeacon Advertiser section.

1.1 Quick Start

e Install Atmosic SDK x.y.z

e Refer to Pin Setup section

e Go to the CT_Tracing folder of the Atmosic SDK and type “make clean” then
“‘make run_all BOARD=m2202” to program flash. ” Press and hold the button for
5 secs (see MMI event and behavior), the LED will blink and start sending
pairing advertisements with “ATM-CTracing” as the device name. Refer to Flash
Sector Layout for more details.
Note: The BOARD setting can be “BOARD=<m2202|m2201|m2221|m2251|
m3201|m3221|m3231>

e In this application, the address will be generated randomly during boot up. Refer
to Address modes section for detail.

Random address can be found in the console log as shown in Figure 1.:

atm_gapl[V¥1: atm_gap_rand_addr_ind - status = 0
atm_gaplIl¥]: - actv_i1dx =0

atm_gaplI[V¥]: - addr_type = B0x1
atm_gapl[V¥]: - addr = Oxe9:0x31:0xd5:0x5T :0xf5:0xab

Figure 1 - Random Address Message in Console Log

e Console Message for different stages. After booting, see Figure 2:

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 7

Atmosic

POOROALA ATM2xxx-xBx silicon
Stacked Sx5 EXT_FLASH: 4e 56 44 53 11 06 01 04 12 06 01 62 16 06 01 06 ...
PBBB01el Cold reset
[CT_scanllD]: scan_record_list_init - nvds_record[Bx200083d01
[top_mmil[D]: local time: B s
button_init: CFG_GPIO_MMI_BTH=9

[CT otallV¥]l: CT ota check boot bank

[CT otallN]l: - debug = 0x1000000f, remote AHB=0x100000
[CT otallH]l: - active status 1

[CT otallH]l: - inactive status =1

{ CT otallH]l: - bank = @

top_mmilIV¥]: mmi_enter_hid
Figure 2 - Booting Message in Console Log

o MMI on (press and hold the button over 5 secs) and wait for timeout
Creating connectable advertisement (timeout is 30 secs), see Figure 3.

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 8

Atmosic

AR002caal top_mmil(D]: hold 5060

top_mmil(D]: hold 1060

top_mmil[D]: hold 1500

top_mmil(D]: hold 20060

top_mmil(D]: hold 2560

top_mmil(D]: hold 3060

top_mmil[D]: hold 3500

top_mmil(D]: hold 40060

top_mmil(D]: hold 4560

top_mmil(D]: hold 5060

top_mmil[D]: MMI tag on

top_mmil(D]: hold 5060

top_mmil(D]: hold 5060

atm_gapl[¥]: atm_gap_rand_addr_ind - status = 0

atm_gapl[¥]: - actv_idx =0

atm_gapl[¥]: - addr_type = 0xl

atm_gapl[¥]: - addr = 0xd0:0x12:0x5b:0xbc: 0x46: Oxlc
[ble_gap_sellN]: BOND HASK : @
[atm_gapl[¥]: Unhandled GAPH msg Bxdlc
[atm_gapl[¥]: Unhandled GAPH msg Oxdlc
+otaps init: hdl:0, app_task:&, sec:4

@00051562 dts: +dts, maxc:o attc:? atth:32

@300515ed dts: found port type:1,1:512, att:2

@00051680 dts: found port type:3,1:512, att:o
otaps: bulk hdl:2 mbox hdl:5
UPGD init mx_wr:2048, mx_len:512
UPGD init a_off: 0xB, i_off:0x80000, p_size:0x80000, e_size: 40896
UPGD init nu_off: 0x78000, size:32768
UPGD init debug: 0x1000000f
[atm_gapl[¥]: Unhandled GAPH msg Bxdlc
[atm_prfsl{V]: atm_prfs_init:

[atm_gapl[¥]: Unhandled GAPH msg Bxdlc

[top_mmil[V¥]: ble_init_cfm

[CT_scanll¥]: scan_init

[CT_scanllDl: - entry number{145} for each flash sector

[CT_scanllD]l: - flash sector total number for record{176) unit: &4KB
[CT_nvdsllE]l: Error nvds_init - get record next idx: err=2
HYDS: Read: Configuration Parameter

[CT_nvdslIDI: - Adv. Interval = Oxff (255ms){unit: ms)
[CT_nvdsllD]: - Enable Encryption = 0x81

[CT_nvdsl[D]: - Activation Status = BxB1

[CT_nvdslID]: Tag Type]

[CT_nvdslID]: RSST Filter Level LN

[CT_nvdslID]: Proximity Interval = 54 secs

[CT_nvdsllD]: - Scan Period = 60 secs

[CT_nvdsl[D]: - Scan Duration = 840 ms

[top_mmil[DI: Create Connectable Pairing Adv.

[atm_advl[D]: Advertising duration 3000(in unit of 10ms) max_adv_evt O (timeout Oms)
[ble_atmprf1IN1: ble_atmprfs_active_svc_db: svc_idx (0), start_hdl {39}, attr_num (3}
[ble_atmprf1IN]: ble_atmprfs_active_svc_db: svc_idx (1), start_hdl {42}, attr_num (12)
[app_bassl[V]: app_bass_send_lvl_ch: result 2.497Y, Capacity §.9% 9%

top_mmil(D]: ATH_ADY_CREATED act_idx=0

top_mmil[D]: ATH_ADY_SCANDATA_DONE

atm_adv1(D1: AdvB: ON (@)

top_mmil(D]: ATH_ADY_ON act_idx=0 entry_idx=0
@000531ch top_mmil{V¥]: s_working

Figure 3 - MMI On Message in Console Log

Figure 4 shows advertising timeout:
@000527b2 [top_mmil[D]: Create Connectable Pairing Adv.

00052881 [atm_advl(D]: SIS0 3600{in unit_of 10ms) nax_adv evt 0 {timeout Bns)
Figure 4 - Connectable Advertisement Timeout Message in Console Log

CT_Tracing configuration setting, see Figure 5.

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 9

Atmosic

@00052072 N¥DS: Read: Configuration Parameter
@peBs52117 CT_nwdsI[D]: - Adv. Interval
@00052218 CT_nudsl[D]: - Enable Encryption
@00R522de CT_nuds1[DI: - Activation Status
@0pB523ak CT_nuds1lD]: - Tag Type

@0PB52460 CT_nuds1lD]: - RSSI Filter Level
@0BB52533 CT_nwdsI[D]: - Proximity Interval
200052604 CT_nuds1[DI: - Scan Period
@000526d4 CT_nwds1ID]: - Scan Duration

Figure 5 - CT_Tracing Configuration Setting Message in Console Log

Bxff (255ms){unit: ms)
Ax01

Ax01

0

-100dBm
ok secs
60 secs

840 ms

Enter the Scan phase and print out the iBeacon device, then save into RAM. See
Figure 6.

Figure 6 - Enable Scan Message in Console Log

Connectable-advertisement: timeout is 30 secs.
If there is no connection, it will move to scan/iBeacon phase after the advertisement
timeout.

Found iBeacon, see Figure 7.

ceive Proximity Tag:

ord list update : last rx 83 Fi 30(s) prox = 14

Figure 7 - Scanned iBeacon Message in Console Log

Refer to Scan Device Flow section.

o In the scan phase, the advertisement is also alive by sending an iBeacon
and updating the “major” field of iBeacon payload per 500 ms (defined in
INTERVAL_UPDATE_IBEACON_PAYLOAD). The default advertisement
interval is 255 ms. If you are using Mobile Scan APP to check this
iBeacon, you will see the “Major” value increase. Minor field reports
current battery level. Refer to Figure 8.

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 10

Atmosic

@ N/A (iBeacon)
D4:44:15:51:63:3E
NOT BONDED A-54dBm & N/A

Device type: UNKNOWN

Advertising type: Legacy

Flags: GeneralDiscoverable, BrEdrNotSupported
Beacon:

Company: Apple, Inc. <0x004C>

Type: Beacon <0x02>

Length of data: 21 bytes

UUID: 00112233-4455-6677-8899-aabbccddeeff
Major: 87

Minor: 0

RSSI at Tm: -56 dBm

CLONE RAW MORE

Figure 8 - iBeacon Payload

o Connection Phase (press button and hold over 5 secs to enter
connectable advertisement, then use Mobile APP to connect).
Refer to Connection Parameter Negotiation and Figure 9.

00 (unit: 10ms)

(unit:1.25ms)

0 (unit: 10ms)

Figure 9 - Connection Message in Console Log

11

Atmosic

Mobile APP can discover Bluetooth LE services as shown in Figure 10. Refer to
Bluetooth LE GATT Services for more information.

= Devices DISCONNECT

ATM-CTRACING X

CONNECTED

NOT BONDED CLIENT SERVER

Generic Access
UuID: 0x1800
PRIMARY SERVICE

Generic Attribute
UUID: 0x1801
PRIMARY SERVICE

Device Information
- UUID: 0x180A
PRIMARY SERVICE
Unknown Service
uuID: 0a0-a0a0-a0a0
PRIMARY SERVICE

Unknown Service
uuID: b0b0-b0b0-b0bO: b0
RIMARY SERVICE

Figure 10 - Bluetooth LE GATT Service in Mobile APP

o Disconnection
After disconnection, the device will move to scan+iBeacon concurrent
mode.

2. Application States

In this application, four MMI (Man Machine Interface) states and nine sub states are
defined. The MMI states transition rely on the traversal of sub-states which are triggered
by MMI events. See Table 1 for state descriptions.

Table 1 - MMI State Descriptions

MMI State Name Description

MMI Off Device is in hibernation mode.

MMI On CADV Device is sending connectable advertisements and waiting for connection.
CONN Device is connected for setting and data retrieving.

IBCN Device is sending iBeacon advertisements and scanning

See Figure 11 for top MMI states transitions.

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 12

Atmosic

Power On

—

- Hibemnatiqn timeout(12 hour)

Event #2

BT disconnected,
CONN

Evan_tjﬂ/‘

BT connected —— Transit to CADV
Buttop hold 5s Ev+nt #d ‘
ADV Timeout 30s —= Transit to IBCN

----+ Transit to Off
— Transit to IBCN

Figure 11 - MMI Transitions

2.1 MMI events and behavior

MMI events trigger state transitions of the application to accomplish user scenarios. The
MMI events in this application can originate from GPIO button, ADV timeout, hibernation
timeout or BT events.See Table 2 for events and their behavior.

Table 2 - MMI Events and Behavior

Event Event Event Condition LED Behavior Transitions/
Number | Type Description

[Button] Holding for 5 secs. Blink once every 3 [Transition]

Source default defined: seconds for 30 seconds MMI Off --> CADV
*APP_BTN_POWER_ON_TIME Source default defined:

*APP_LED_TAGON_PER

10D
*APP_LED_TAGON_DUR
ATION
2 [Button] Holding for 30 secs. Blink 2 times (once every [Transition]
Source default defined: 200 ms) CADV --> MMI Off:
*APP_BTN_POWER_OFF_TIME Source default defined: or
*APP_LED_TAGOFF_PE [Transition]
RIOD IBCN --> MMI Off
*APP_LED TAGFF _DUR
ATION
3 [Button] Holding for 5 secs. Blink once every 3 [Transition]
Source default defined: seconds for 30 seconds IBCN --> MMI Off

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 13

3-1

3-2

3-3

*APP_BTN_ENTER_CONNECTA
BLE

Short click 3 times

Source default defined:
*BTN_SHORT_PRESS TO BAS
_REPORT

[Button]

Short click 5 times

Source default defined:
*BTN_SHORT_PRESS_SHOW_R
AM_RECORD

[Button]

Short click 7 times

Source default defined:
*BTN_SHORT_PRESS_ RETREIV
E_FLASH RECORD

[Button]

Short click 9 times

Source default defined:
*BTN_SHORT_PRESS TO_REB
ooT

[Button]

[ADV
timeout]

30s after entering CADV
Source default defined:
*ADVO_START_DURATION

[Hiberna
tion
timeout]

12 hour after entering MMI Off.
Source default defined:
*INTERVAL_HIB_SEC

Source default defined:
*APP_LED TAGON_PER
IOD

*APP_LED TAGON_DUR
ATION

Battery level 80 — 100%:
LED Blinks 5 times
Battery level 60 — 80%:
LED Blinks 4 times
Battery level 40 — 60%:
LED Blinks 3 times
Battery level 20 — 40%:
LED Blinks 2 times
Battery level < 20%:
LED Blinks 1 time
(once every 200 ms)

N/A

N/A

LED Comes ON for 2
seconds then blinks 2
times (once every 200 ms)

LED off

N/A

Atmosic

1. Battery test limited to 2
tests in 24 hours
(mmi_led_quick_blink_ti
mes)

2. Only allowed in IBCN
state.

1. Only for debug build FW

2. Suppress scan report
console message

3. Every 30 secs to show
report in console

Note: Short click to enable

scan report console message

(trigger by #2)

1. Only for debug build FW

2. Suppress scan report
console message

3. Read flash sector then
print data out

4. Erase flash sector

5. Enter iBeacon+scan
finally

Note: Short click to enable

scan report console message

(trigger by #2)

[Transition]
->MMI Off

[Transition]
CADV->IBCN

Update internal second
count.
[Transition]

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060

14

Atmosic

MMI Off->MMI Off

[BT N/A If updating new May update new
disconne configuration data into configuration data into flash
cted] flash nvds: nvds.

LED Blinks 4 times [Transition]

(once every 200 ms) CONN --> CADV

If not updating new
configuration data into

flash nvds:
LED off
[BT N/A LED Blinks endless (once [Transition]
connect every 500 ms) CADV-->CONN
ed] Source default defined:
*APP_LED_CONN_PERI
oD
[BT log N/A LED Blinks 4 times The data was read out from
uploadin (once every 200 ms) the BLS (Beacon Logger
g done] Service) client.

2.2 Sub states

Since BT advertising and scanning utilize many APIs which need sequence controlling
the application uses atm_asm module to create sub states for them and use them to
accomplish the top MMI states transition. See Figure 12 for the detailed state transitions.

OF_MODULE_IMIT
o~ _"--.___

OF_DIS COMNECT(Event #6)

- o / _ N
5 OF_RECORDS_READY /')
- M G - CADN % OF_D_PAIR_ADY / P I|
OP_C_IBEACON | Bujon #3 OF_CPAIRCADY CFM /
- WM On - IBCH I f o
MMI On - CONN v ¢ _OP_CONNECTED /

5_CONNECTED —

—— Transit to CADY |/ .
BE_C_IBEACON_CFM

Transit te IBCN =
I0F_START_SCAN — .
I,

----+ Transil la QN
——= Transit lo CONN "~ up_sprTscm

- e

Figure 12 - Detailed State Transitions

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 15

Atmosic

2.3 Compile options for initial state

There are two compile options for top_mmi.c (BOOT_TO_HIBERNATION and
MMI_ON_TO), see Table 3.

Table 3 - Compile Option for Booting

Define 0 After power up, enter hibernation. Wait for the button
to wake up and move to connectable advertisement
(CADV) and will enter iBeacon+scan (IBCN) after the
timeout happens.
It is the default setting

Define 1 1. After power up, enter hibernation.
2. Wait for the button to wake up and move to
iBeacon+scan (IBCN).

Undefine 0 After power up, move to connectable advertisement
(CADV) and will enter iBeacon+scan (IBCN) after
timeout happens.

Undefine 1 After power up, move to iBeacon+scan (IBCN).

3. Software Modules

3.1 Module description
In CT tracing example, nine C source files and thirteen C header files were included.
Please refer to Table 4 for the description.

Table 4 - Module Description

CT_adv.c(.h) Advertisement payload and parameter updating.
CT_param_adv.h Advertisement compile configuration.

src/bt CT_gatt.c(.h) BLS (Beacon Logger Service) GATT operations.
CT param_gap.h GAP compile configuration.
CT_scan.c(.h) Scan list and record list handling.

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 16

CT_parm_scan.h
CT _ota.c(.h)

CT_button.c(.h)
src/non_bt CT_cipher.c(.h)

CT_nvds.c(.h)

top_mmi.c(.h)

src
top_mmi_input.c(.h)

3.2 Module hierarchy

Atmosic

Scan compile configuration.

Firmware Over The Air (OTA) setting, information and

flow.

GPIO button event module.

Crypto interface.

Record and NVDS interface..

Flow and state control.

Button event handler.

In CT tracing example, the top_mmi collaborates all other modules by handling events
from BT, button and timer. See Figure 13 for the module hierarchy.

CT_tracing

CT_cipher {—»

CT adv CT_scan

SR

tc:p mmi

CT_gatt

@ top_mmi_input

H I CT button CT nvds

framework (lib/)

atm_prfs | atm_adv

app_gap

app_bass

ble_atmp
rfs

ble_gap

ble bass

Figure 13 - Module Hierarchy

4. Message Sequence Chart
4.1 Power on, MMI on, and MMI off

3pp_d|5$

ble diss

driver

led_blink | sw_timer

gadc ext_flash

atm_gpio interrupt

atm_pm atm_ble

After power-on, the Application will enter hibernation. When the button is pressed and
held to meet number #1 trigger condition, the application will blink LED and enter “BLE
init” phase. When the button is pressed and held to meet number #2 trigger condition
behavior, the application will enter the “Hibernation” phase. See Figure 14.

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060

17

Atmosic

PowerOn) [~~~ "7TTTTTTToomossooosooooes

]
| 1.nit hibernation setting and insert |
i application state machine table '

i
! i

2. Init. LED and button setting

...............................

‘atm_pm_set_hib_restart_time()

‘atm_asm_init_table(s_tbl) -
mmi_input_init(...) -

Hibernation

E —
Event#2_}+- S HIBERNATE _ -:

I : : -

i i =

Figure 14 - Power On, MMI On and MMl Off

4.2 Bluetooth LE init. and start connectable pairing advertising
(CAVD)

In this phase, the application will prepare to send connectable advertising for connection.
The Application needs to use “atm_adv_reg” to register a callback function to SDK
Framework. The Application can use “app_nvds” APIs to get Flash NVDS data. Before
sending advertising, the Application needs to create advertising activity using the
“atm_adv_create” API first. See Figure 15 for the period of Bluetooth LE Initialization and
advertising activity creation.

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 18

Atmosic

BLEINIT) 1 77 7 TTTTTTooTTTooooooooomey
1.prevent to hibernation

I
|
" |
! 2.Init. GATT service
i 3.Init. GAP module
- ' 4. wait l:allbai:k p_init_cfm

atm_gap prf_reg(.)x3 :

5 atm_gap_start(..)

ble_ini;t_cfm

atrn adv_reg(ble_adv_state change)
nvds _get_record_next_idx(..)

nvds_get_dev_guid_keyl(..) :
nvds_get_app_configl(..)

atm_asm_move(OP_C_PAIR_ADV)

:atm_adv_create_param_get(.):'
‘atm_adv_start_param_get|.]
‘atm_adv_create(..) :

i 1.get advertising parameter
| 2.create advertising activity
1

3.wait callback - ble_adv_state_change

ble_a dv_state_change
(___ADV.CREATED >

Figure 15 - Bluetooth LE Initialization and Advertising Activity Creation

After calling “atm_adv_create”, the Application will get an advertising activity ID from
“‘ble_adv_state_change” callback function. The Application will use activity ID to
configure Bluetooth LE advertising data and Bluetooth LE advertising scan response
data, then call atm_adv_start API to enable this advertising activity. See Figure 16 for
the period of advertising activity created to to start.

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 19

Atmosic

: i 1.get adv. and scan data
(C_ADV.CREATED D' 7'5et adv. and scan data
: 1 3.wait callback - ble_adv_state_change

Eatm_adv_advdata_param _gel(.i.)
:atm_adv_scandata_param_get{..)

éatm_adv_sat_data_sanity(..}|

atm_adv_set_adv_data(..)
atm_adv_set_scan_data(..)

. ble_adv_state_change(ATM_ADV_ADVDA
. TA_DONE or ATM_ADV_SCANDATA_DONE)

il
-

atm_adv_start(..)

hle_adv_state_chande[ATM_ADV_GN}

-

- atm_asm_move(OP_C_PAIR :ADV_CFM)

Figure 16 - Advertising Activity Created to Start

4.3 Connectable pairing advertising (CADV) timeout

When advertising is timeout, the Application will receive an “ATM_ADV_OFF” event
from the “ble_adv_state _change” callback function. The Application will base on
activation status value (default value loaded from Flash NVDS) to create iBeacon
advertisement or enter hibernation mode. See Figure 17.

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 20

Atmosic

< Start Connectable Pairing adv. _')

ble_adv_state change{ATM ADV_OFF)

atm_asm_move(OP_D F’AIF{ _ADV)

;aun_adu_dalete(..)

ible_adv_stata_cha rlngaelf,é ATM_ADV_DEAD)

Figure 17 - Connectable Pairing Advertising Timeout

4.4 Start beacon advertising activity

To create and start iBeacon advertising activity is the same as Connectable Pairing
Advertising.

The advertising interval of iBeacon can be overwritten by GATT service using Mobile
APP. The advertising interval will also be stored in Flash NVDS. The Application also
can use the “adv_up_ibeacon_param” API to change the advertising interval. Before
updating the advertising payload, the Application can use the “cipher_encrypt” API to
encrypt the payload. See_Figure 18.

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 21

Atmosic

1.get advertising parameter E

2.create advertising activity 1

3.wait callback - ble_adv_state_change ‘
________________ e

: atm_adv_create_param_get(..) :

1 atm_adv_start_param_get{..)
afﬂv_up_iheacon_stah:s _payload(..)

adv_up_ibeacon_param..)

cipher_setup(..)
cipher_encrypt(..)

atm_adv_create(..)

© ble_adv_state_change(ATM_ADV_CREATED)

Figure 18 - Start iBeacon and Create Advertising Activity

iBeacon’s device UUID can be updated by the “adv_up_guid” API. See Figure 19.

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 22

Atmosic

.get adv. and scan data
.set adv. and scan data

.wait callback - ble_adv_state_change

[

atm_adv_advdata _i:)aram _get(..)
atm_adv_scandata_param_get(..)

adv_up_guid{..}_-

atm adv set I:Iat‘ir:u sanity(..)

ble_adv_state_ change(
ATM_ADV_ADVDATA_DONE or
ATM _ADV_SCANDATA_DONE)

atm adv st:art(..}

hle_adv_state;t:hange(
> ATM_ADV:ON)

atm_move_state(nP_chEACUN_CFM}-

Figure 19 - Start iBeacon and Start Advertising Activity

4.5 Update iBeacon status field of adv. payload

The iBeacon activity is alive so the application can use
“adv_up_ibeacon_status_payload” API to update the status field of iBeacon payload.
The example will have the “TEST_UPDATE_IBEACON_PAYLOAD” definition, which is
defined by default.

It will create one 500 ms timer to update the payload for iBeacon. The
“‘mmi_update_adv_timer” function can explain how to upgrade the payload of iBeacon.

See Figure 20.

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 23

Atmosic

i;tdv_up_ibeaonn_param(.)

cipher_setup(..)
cipher_encrypi(..) "

adv_up_ibeacon

Figure 20 - Update iBeacon Advertising Payload Periodically

4.6 Connection indication

The Application will receive a connection indication event via “p_conn_ind” callback
function of GAP callback. The Application will move to the connection state and turn off
LED. See Figure 21.

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 24

Atmosic

< Start Connectable Pairing adv. >

3 hle_conn_inl::l
Atm_gap_connect_
. gap_conn_ind(..) _- param_nego(..)

Connection Indication

atm_asm_mcv;e(OF_GDNNECTED)

led éff(..;

Figure 21 - Connection Indication

4.7 Disconnection indication

The Application will receive a disconnection indication event via
“ble_adv_state_change” callback function. The Application will record the configuration
data into Flash NVDS data if having data update. The Application will check activation
status configured using GATT service, then start iBeacon or enter hibernation. See

Figure 22.

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 25

Atmosic

<_Under Gonnwhon o

atm_asm_move(Q P_E; IS_CONNECT)

Dis-Connection

ble disc ind

nvds _pui_app_conﬁg(. by

s_adv_d Jafr adv(..)
atm_adv dalete()

ble adv_state changetﬂTM ADV_DEAD)

Figure 22 - Disconnection Indication

4.8 GAP Pairing

The top_mmi will receive the pairing request indication event via “p_pair_req_ind”
callback function and it will call gap_pair_req_ind function to handle this event. In this
example, no bonding is set to complete the whole pairing process. See Figure 23.

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 26

Atmosic

-y ‘Connected >

ble_pair_req_ind|..)

Pairing) | | ble__
Request | 9ap_pair_req_ind(..) app ble_gap_sec_pairing_rsp() | 98P—
3 - sec
: gap
: p_pair_ind(..)
Pairing] = : atm_
Result ~ gap_pair_ind(.) (RS
: gap

Figure 23 - Pairing Request Indication

5. Hardware Setup

5.1 PIN Setup

Table 5 - PIN Setup

Button GPIO setting PIN_CT_MMI_BTN used in CT_button.c
LED GPIO setting PIN_LEDO used in led_blink.c
Notes:
1) GPIO settings can be overwritten using PIN_CT_MMI_BTN, PIN_LEDO in build
time.

2) PIN_CT_MMI_BTN is active-high logic by default in this example code. For
active-low logic, apply the “CFG_GPIO_MMI_BTN_ACTIVE_LOW:=1" on make
command..

3) For ATM2202 EVK (J4: pin 39 as GPIO_9 (button), pin 40 as GPIO_10 (LED)),
use

a) make run_all BOARD=mM2202CFG_GPIO_MMI_BTN_ACTIVE_LOW:=1
b) tie GPIO_9 to GND to simulate button press

4) For ATM2201 EVK (J4: pin 39 as GPIO_9 (button), pin 40 as GPIO_10 (LED)),

use
a) make run_all BOARD=m2201 CFG_GPIO_MMI_BTN_ACTIVE_LOW:=1

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 27

Atmosic

b) tie GPIO_9 to GND to simulate button press
5) For ATM2221 EVK (J4: pin 39 as GPIO_9 (button), pin 37 as GPIO_7(LED)),
use
a) make run_all BOARD=m2221 CFG_GPIO_MMI_BTN_ACTIVE_LOW:=1
b) tie GPIO_9 to GND simulate button press

5.2 Configure flash layout

For layout customization, the user could modify the USER_SIZE in “makefile” to have a
different beacon logger flash sector range. After applying this change, perform “make
clean” then “make run_all BOARD=m22022x1>". If BOARD is not assigned, the
default is m2221.

Note: The BOARD setting can be “BOARD=<m2202|m2201|m2221|m2251|
m3201|m3221|m3231>

ifeq ($(BOARD),m2202)

ifneq (,$(filter OTAPS,$(PROFILES)))
FLASH_SIZE = 0x80000

NVDS_SIZE = 0x8000

ifdef FLASHROM

USER_SIZE = 0x10000

else

USER_SIZE = 0x58000

endif

PMU_CFG := VBAT_GT_1p8V_VDDIO_EXT

else #OTAPS

FLASH_SIZE = 0x100000

NVDS_SIZE 0x8000

USER_SIZE 0xD8000

PMU_CFG := VBAT_GT_1p8V_VDDIO_EXT

endif #OTAPS

else ifneq (,$(filter m2201 m2221 m2251 m3201 m3221 m3231
x2xx_emu, $(BOARD)))

ifdef FLASHROM

CFLAGS := $(filter-out -DCFG_OTA, $(CFLAGS))
NVDS_SIZE = 0x8000

USER_SIZE = 0x18000

else ifneq (,$(filter OTAPS,$(PROFILES)))
FLASH_SIZE = 0x40000

NVDS_SIZE = 0x8000
USER_SIZE = 0x18000
else

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 28

Atmosic

FLASH_SIZE = 0x80000
NVDS_SIZE = 0x8000
USER_SIZE = 0x58000
endif
else
$(error "usage: make $(MAKECMDGOALS)
BOARD=<m2202 |m2201|m2221|m2251 [m3201 [m3221 [m3231>")
endif

User can confirm flash layout changes in makefile using following command
"make layout_info BOARD=m2202". Figure 24 below shows sample output.
Note: The BOARD setting can be “BOARD=<m2202|m2201|m2221|m2251|
m3201|m3221|m3231>"

$ make layout_info

UFLASH (0x20000)

Figure 24 - Flash Layout Message

5.3 Flash sector layout

There are three kinds of makefile targets used to program flash, run_all, run, and
push_flash_nvds. The run_all target programs the firmware and Flash NVDS. The run
target only program firmware. These two targets both cause the Record sector to be
erased. To keep the record sector, please assign PRESERVE_USER 1 on command
line. Table 6 shows comparison of targets.

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 29

Atmosic

Table 6 - Comparison of Targets

Y Y Y

run_all

run Y N Y
run_all RESERVE_USER:=1 Y Y N
run PRESERVE_USER:=1 Y N N
push_flash_nvds N Y N

To have a clean environment for testing, please use “make run_allct’. The default
record sizes of ATM22x1 and ATM2202 W/WO OTA enabled are 0x30000
(0x18000*2), 0x58000, 0xB0O0O0O (0x58000*2) and 0xD8000. Figure 25 shows the
default layout of ATM2202.

ATM2207 (3 Mb) (1 MB)

OTA enabled . OTA not enabled

Bank 0

Bank 1

Figure 25 - Default Layout of ATM2202

Figure 26 shows the default layout of ATM22x1.

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 30

Atmosic

OTA enabled OTA not enabled

Bank 0

Bank 1

Figure 26 - Default Layout of ATM22x1

5.4 Interface board for console log

Your hardware device may only have a UART console pin (TX and GND pin). You can
use the Atmosic interface board as a UART level shifter and connect the USB1 port to
the PC using a USB cable. See Figure 27.

Figure 27 - UART Console Pin of Interface Board

1) Device’s UART TX pin connects to UART1_TX (JP24 of interface board, right
side)
2) Device’s GND pin connects to the upper side of JP9.

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 31

Atmosic

6. Application defined flash NVDS

The following application defined tag data will be used in this example. See Table 7.

Table 7 - Flash NVDS Settings

OxAA Device Unique Parameters \tag_data\AA-APP_DEV_GUID_KEY\default.tds

O0xAB Configuration Parameters \tag_data\AB-APP_CONFIG\default.tds

6.1 Device unique parameters (Tag ID:0xAA)
The following is the content of the .tds file, whose byte order is LSB first.

GUID
00 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF
Pairing Key

01 01 02 03 04 05 06 07 08 09 QA 0B 0C @D OE OF
Device Key
00 10 20 30 40 50 60 70 80 90 A0 B0 C0 DO EO FO

6.2 Configuration parameters (Tag ID: OXAB)

The following is the content of the .tds file, whose byte order is LSB first. This
parameter will map to nvds_app_config_t structure. Also see Table 8.

Advertising Interval (unit: ms)
FF 00

Enable Encryption

01

Activation Status

01

Tag Type

00

RSSI Filter Level

9C

Proximity Interval

36

Scan Period (unit: sec)

3C

Scan Duration (unit: 10ms)
54 00

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 32

Atmosic

Table 8 - Tag ID OxAB - APP_CONFIG Flash NVDS Settings

Description Byte Size Unit/Type Note

Advertising Interval 2 ms iBeacon advertising interval.
Default: 255 (255 ms)

Enable Encryption 1 bool Payload to be encrypted. Null function for
customer to customize. Refer to CT_cihper.c
Default: 1

Activation Status 1 bool Enable activation will let devices to send

advertisements and scan after leaving
connectable-adv. Stage. Refer to Figure 17 -
Connectable Pairing Adv. Timeout

Default: 1
Tag Type 1 Advertisement Advertisement is using iBeacon payload
payload type format by default. Customers can extend this.
Default: 0
RSSI Filter Level 1 dBm Scanned beacon’s RSSlI is larger than this

filter level will be logged.
Default: -100 dBm

Proximity Interval 1 second Scanned the same Beacon ID device will be
logged (or increase proximity counter) if the
receive time is larger than this.

Default: 54 (secs)

Scan Period 1 second Default: 60 (secs)

Scan Duration 1 10 ms Default: 840 (ms)

6.3 Apply the change

Using a text editor tool to open and edit the .tds file. Re-build the example code using
“‘make run_all”’. The “device unique parameters” and “configuration parameters” will
program into the Flash NVDS sector.

6.4 Update device UUID of Advertisement payload

The Application will call “adv_up_uuid” APl when creating pairing advertisements or
iBeacon advertisements. The Device UUID is from Flash NVDS. See Figure 28.

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 33

Atmosic

Figure 28 - iBeacon Data Payload

7. Default Parameters
7.1 Advertisements

All the advertisement parameters are defined in “CT_Tracing\src\bt\CT_param_adv.h”.
This header can support Keil IDE’s configuration wizard. Open this header file using
keil IDE to get a richer configuration interface. See Figure 29. Refer to the “Bluetooth
LE Advertisement Example Application Note” document to get more details.

Expand Al | Collapse Al |

Option

[PairAdv]Advertising Timeout Configuration

=) {PairAdv]Advertising Parameter

B-8-E-8

Enable User Define Advertising Parameter
- Type of advertising
: Advertising discovery mode
Advertising Property
Advertising channels enables
Select the Primary PHY
Min. Advertising interval
Max. Advertising interval
Maximum power level
Secondary PHY
Periodic advertising
[PairAdv]Advertising Data/ScanRsp Payload
[iBeacon]Advertising Timeout Configuration
[iBeacon]Advertising Parameter
[iBeacon]Advertising Data/ScanRsp Payload

Help I [~ Show Grid

Value

2
Legacy advertising
Meode in general discoverable

LE 1M PHY
500

500

0dbm

[PairAdv]Advertising Parameter

[PairAdv]Advertising Parameter: Please enable first check box first

Figure 29 - Keil Configuration Wizard for Advertisement Parameter

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060

34

Atmosic

This example code uses two advertisement sets. One is for the pairing advertisement
and the other is for iBeacon advertisement. For the app_env_tag_ t structure,
CFG_GAP_ADV_MAX_INST is set to 2. The first index is for pairing advertisements and
the other is for iBeacon. The connectable pairing advertisement and non-connectable
advertising are using the same index (IDX_PAIR_ADV). The example code will use the
index to access the array objects and change advertising parameters

typedef enum {
IDX_PAIR_ADV,
IDX_IBEACON
} adv_set_t;

atm_adv_create_t *create[CFG_GAP_ADV_MAX_INST];
atm_adv_start_t *start[CFG_GAP_ADV_MAX_INST];

atm_adv_data_t *adv_data[CFG_GAP_ADV_MAX_INST];
atm_adv_data_t *scan_data[CFG_GAP_ADV_MAX_INST];

The Application uses the index to access parameters and can modify all parameters at
runtime (see adv_up_ibeacon_param API as example).

About the payload of advertisement customization, users need to modify
“param_gap_adv.h”. See the following CFG_ADV0_DATA_ADV_PAYLOAD and
CFG_ADVO_DATA_SCANRSP_PAYLOAD definitions.

#define CFG_ADVO_DATA_ADV_PAYLOAD

0x1B, OxFF, 0x66, 0x66,0x01,0x01,0x11,0x22, 0x33,0x44, 0x55, 0x66, 0x77, 0x88,0x99, 0x10,0x11,0x12,0x13,0x14,0x15,0x16,0x00,
0x00,0x00, 0x00, 0x00 , Ox0A

// 0x41-'A' 0x54-'T' 0x4D-'M' 0x2D-'-' 0x43-'C' 0x54-'T' 0x72-'r' 0x61-'a' 0x63-'c' 0x69-'i' Ox6E-'n' 0x67-'g'
#define CFG_ADVO_DATA_SCANRSP_PAYLOAD
0x0D,0x09,0x41,0x54,0x4D, 0x2D,0x43,0x54,0x72,0x61,0x63,0x69,0x6E,0x67, /*Appearance*/0x03,0x19,0x00,0x02

7.2 GAP Parameter

It is defined in “CT_Tracing\src\bt\CT_param_gap.h”. This header can support Keil
IDE’s configuration wizard. Open this header file using keil IDE to get a richer
configuration interface. See Figure 31.

7.2.1 Connection Parameter Negotiation

There are four related parameters:
CFG_GAP_CONN_INT_MIN/CFG_GAP_CONN_INT_MAX/CFG_GAP_CONN_TIMEO
UT/CFG_GAP_SLAVE_LATENCY. After connecting with Bluetooth LE master, the
device will perform connection parameter update negotiation. In app_gap.c -

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 35

Atmosic

gap_connect_param_nego(), param_nego is the parameter for connection parameter
negotiation. Customers can modify the parameter depending on the application. See

Figure 30.

intv_min-

intv_max-
latency-
time out-

Figure 30 - Connection Parameter Setting

7.2.2 Generic Access Device Name

CFG_GAP_DEV_NAME is used to show device name when Mobile APP connects to
the device and shows in “Generic Access” service.

7.2.3 Generic Access Appearance

CFG_GAP_APPEARANCE is used to show device name when Mobile APP connects
to the device and shows in “Generic Access Appearance” service.

7.2.4 Security Level

The pairing mode and service level security level will use “SEC_PROP” and
“‘SEC_BONDING?” for configuration. The default is Unauthenticated no MITM
protection.

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 36

Expand All Collapse Al Help | [~ Show Grid

Option

Generic Access Device Name

Generic Access Appearance

Minimum value for connection interval
Maximum value for connection interval
Supervision timeout for the LE Link
Slave latency

Auth Propery

Bonding

Generic Access Device Name
Generic Access Device Name

Figure 31 - Keil Configuration Wizard for GAP Parameters

7.3 Scan parameter

Atmosic

Value

ATM CTracing
0x0200

16

16

500

10

MIT™

Mo Bonding

It is defined in “CT_Tracing\src\bt\CT_param_scan.h”. This header can support Keil
IDE’s configuration wizard. Open this header file using Keil IDE to get a richer

configuration interface. See Figure 32.

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060

37

Atmosic

D param_scan.h

Expand Al | Collapse All | Help [~ Show Grid
Option Value
g
Scanning types Observer
[+ Scanning properties bit field bit value
Filtering policy for duplicated packets Disable filtering of duplicated packets
[=- Scan internal and windows setting
1M PHY Scan internal (unit: us) 280000
1M PHY Scan window (unit: us) 280000
Coded PHY Scan internal (unit: us) 10000
Coded PHY Scan window (unit: us) 10000
Scan continuously [v
Scan duration (unit: ms) 3000
Scan procedure is not periodic [
Scan period (unit ms) 5000

Overwrite Default Scan Parameter
Overwrite Default Scan Parameter

Text Editor ?\ Configuration Wizard f

Figure 32 - Keil Configuration Wizard for Scan Parameters

8. Button

The button handle is controlled by two modules: top_mmi_input.c and CT_button.c.
The CT_button.c responds to the GPIO edge detection and timer measurement for
button pressing, release and hold. top_mmi_input.c provides the mechanism of
registering high layer user input events (hold, hold release and click) and reports them
to top_mmi.c. Figure 33 shows the code pieces about registering input events and its
callback function. The definition APP_BUTTON_HOLD_ UNIT was defined in
CT_button.h to apply as the precision of the timer. It is also used as the qualification of
the time of click event.

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 38

Atmosic

- -DEBUG_TRACE("hold-%1u™ , -
. -mmi_btn_hold_handler(
3
- -DEBUG_TRACE("hold release-%1u", -
. -mmi_btn_click_handler(
3
.

. "1
- -DEBUG_TRACE("click™);

nput_init_t-input_config-
-mmi_btn_input_event,

I -

Figure 33 - Register User Input to top_mmi_input.c

Figure 34 shows how top_mmi_input.c detects 1s hold release and 5s hold.

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 39

Atmosic

Button Event =

press (i1}

mmi_input_init{ 15 hold release, Sz hold) -

—_—
down_continual15)

mmi_bin_inpul_avenl{1s hold release) upt2-11)

" Release (12) (> 11+1s)

down{0) press (14) |
down_continue((.5s i

down_conlinue(1s)

i :
S mmi_Bin_inpul_eveni[5s hold refease] down_continue(Ss)) —
H i Still hold (14+5s)

Figure 34 - Sequence Chart of CT_button and top_mmi_input

9. Hibernation Management

In this example code, the atm_pm module’s lock scheme is used to manage whether or
not to prevent entering a hibernation state. If all modules unlock hibernation, the
system will enter hibernation. Two locks were defined in this example code:
mmi_lock_hiber and button_lock_hiber. In the source file, atm_pm_lock() and
atm_pm_unlock() are the points where each module decides whether to lock or not.
Below is the brief list and description:

e mmi_lock_hiber

o Used by top_mmi.c

o Locked when BT resource needed.
e button_lock_hiber

o Used by CT_button.c

o Locked when timer needed

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 40

Atmosic

10. GATT Service Create/Read/Write

This section describes how CT_gatt.c uses ATMPRF (Atmosic Profile) APIs to create
the service and response of the GATT operations through the SDK framework. The
ATMPREF provides an easy way to help users create their own services quickly that just
need to register a few callback functions with the service creation API
(ble_atmprfs_add_svc(...)). In this example code, atmprfs_cbs is defined as callback
functions, shown in Figure 35.

ble_atmprfs_cbs_
read req-

- .write_req-
-.att_info_req-

Figure 35 - GATT Callbacks
The following four callback functions are needed:

e g read_req: Called while peer read characteristics. Use ATMPRF API to provide
data here.

e p write_req: Called while peer write characteristics.

e p_ att info_req: Called when peer use gatt prepare write. Return the right
characteristic value length here.

10.1 Create GATT service

There are 5 APIs used to create customization service, see also Figure 36.

e Dble_atmprfs_create_add_svc: Add service.

e ble_atmprfs_add_char: Add characteristic.

e ble_atmprfs_add_client_char_cfg: Add client characteristic configuration
descriptor.

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 41

Atmosic

-CT_gatt_create_prf(

- -uint8_t-

--uint8 t-

- ~uint8_t-

--uint8 t- -bls_ sto

--uint8_t- -bls_used_uuid
--uint8 t- -bls _record size uuid
--uint8 t- -bls _cmd _uwuid][

- ~uint8_t-

]-=-ble_atmprfs_add_char(

3 } 3

1-=-ble_atmprfs_add_char(

]-=-ble_atmprfs_add_client_char_cfg(]

Figure 36 - Service Creation

10.2 Handle ATT Read

When the peer device tries to read data from characteristics, CT_gatt will receive an
event from the p_read_req callback. Then CT_gatt will reply to the data by calling
ble_atm_prfs_gattc_read _cfm. See Figure 37.

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 42

Atmosic

app_att_read_req{} - p_l'Eﬂd_l"Eﬁ

ble_atmprfs_gattc_read_cfm()

Figure 37 - GATT Read

10.3 Handle ATT Write

When the peer device tries to write data to characteristics, CT_gatt will receive an
event from the p_write_req callback, and it will inform top_mmi by calling
mmi_cfg_data_handler or mmi_bls_cmd_handler function. See Figure 38.

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 43

Atmosic

<_ Connected _

cT
app_att_write_req() gatt | write_req 2

Figure 38 - GATT Write

Except for the normal operation, users can respond errors to the peer if the data is not
valid or the state is not allowed to write. In the example code, some wrong operations
with wrong data length, wrong data or wrong command are banned. Please check the
source file for more information.

11. Address Modes

There are four address modes in this example code. “Generate new Random Address
while Booting.” is default mode.

1. Generate new Random Address while Booting
In CT_param_adv.h

#define CFG_ADVO_OWNER_ADDR_TYPE GAPM_STATIC_ADDR

#define CFG_ADV1_OWNER_ADDR_TYPE GAPM_STATIC_ADDR

In top_mmi.c - s_ble_init()
atm_gap_gen_rand_addr (GAP_STATIC_ADDR);

In CT_param_gap.h:

/*
#tdefine CFG_GAP_OWN_STATIC_RANDOM_ADDR5 0xC@

#define CFG_GAP_OWN_STATIC_RANDOM_ADDR4 0x11
#define CFG_GAP_OWN_STATIC_RANDOM_ADDR3 0x22

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 44

Atmosic

#define CFG_GAP_OWN_STATIC_RANDOM_ADDR2 0x33
#define CFG_GAP_OWN_STATIC_RANDOM_ADDR1 0x44

#define CFG_GAP_OWN_STATIC_RANDOM_ADDRO 0x55
*/

2. Public Device Address
Example code will follow up Flash NVDS tag’s setting.
In param_gap_adv.h:

#define CFG_ADVO_OWNER_ADDR_TYPE GAPM_STATIC_ADDR
#define CFG_ADV1_OWNER_ADDR_TYPE GAPM_STATIC_ADDR

In top_mmi.c - s_ble_init()
//atm_gap_gen_rand_addr (GAP_STATIC_ADDR);

In param_gap.h:

/*

#define CFG_GAP_OWN_STATIC_RANDOM_ADDR5 0xC0Q
#define CFG_GAP_OWN_STATIC_RANDOM_ADDR4 0x11
#define CFG_GAP_OWN_STATIC_RANDOM_ADDR3 0x22
#define CFG_GAP_OWN_STATIC_RANDOM_ADDR2 0x33
#define CFG_GAP_OWN_STATIC_RANDOM_ADDR1 0x44
#define CFG_GAP_OWN_STATIC_RANDOM_ADDRO 0x55
*/

3. Fixed Random Address
In param_gap_adv.h:

#define CFG_ADVO_OWNER_ADDR_TYPE GAPM_STATIC_ADDR
#define CFG_ADV1_OWNER_ADDR_TYPE GAPM_STATIC_ADDR

In top_mmi.c - s_ble_init()
//atm_gap_gen_rand_addr (GAP_STATIC_ADDR);

In param_gap.h:
#define CFG_GAP_OWN_STATIC_RANDOM_ADDR5 0xC0

#define CFG_GAP_OWN_STATIC_RANDOM_ADDR4 0x11
#define CFG_GAP_OWN_STATIC_RANDOM_ADDR3 0x22

#define CFG_GAP_OWN_STATIC_RANDOM_ADDR2 0x33
#define CFG_GAP_OWN_STATIC_RANDOM_ADDR1 0x44
#define CFG_GAP_OWN_STATIC_RANDOM_ADDRO 0x55

4. Random Address Rotate

Re-new address timeout is 15 mins by default.

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 45

Atmosic

In param_gap_adv.h:
#define CFG_ADVO_OWNER_ADDR_TYPE GAPM_GEN_NON_RSLV_ADDR

#define CFG_ADV1_OWNER_ADDR_TYPE GAPM_GEN_NON_RSLV_ADDR

In top_mmi.c - s_ble_init()
//atm_gap_gen_rand_addr (GAP_STATIC_ADDR);

In param_gap.h:

/*

#tdefine CFG_GAP_OWN_STATIC_RANDOM_ADDR5 0xC@
#define CFG_GAP_OWN_STATIC_RANDOM_ADDR4 0x11
#define CFG_GAP_OWN_STATIC_RANDOM_ADDR3 0x22

#define CFG_GAP_OWN_STATIC_RANDOM_ADDR2 0x33
#define CFG_GAP_OWN_STATIC_RANDOM_ADDR1 0x44
#define CFG_GAP_OWN_STATIC_RANDOM_ADDRO 0x55
*/

12. Scan Device Flow

The default scan parameter is using 1 Mbps PHY and passive scan (refer to
param_scan.h).

Scan device report filter policy is In CT_scan.c (scan_report_ind). See Figure 39.

Is legacy adv.
Y

RSSI level Check received rssi with app_env.config.rssi_filter
A 4

. Compare with IBEACON_PATTERN

Is IBeacon
A 4

Beacon

Logger

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 46

Atmosic’

Figure 39 - Scan Device Report Filter Policy

12.1 Create iBeacon Advertiser

Clone Method:
Scan an iBeacon device in the scan list, clone it, modify UUID, then enable. See Figure

40.

as different Beacon ID

Figure 40 - iBeacon Advertiser Clone Method

Create New Method:
Follow iBeacon payload format to create a new iBeacon advertiser, then enable. See

Figure 41.

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 47

Atmosic

New advertising packet

ADD RECORD
Complete Local Name v
TX power cannable

Setvice UUID

Service Data

f of Data

= o

Manufacturer Data

ot if
1

0x 004C ® X
Data (HEX)

0x 0215 Inser@i%%ésgata after 0x0215

Preview:

Manufacturer data (Bluetooth Core 4.1)
Company: Apple, Inc. <0x004C> 0x0215

J _ CANCEL OK
[
Figure 41 - iBeacon Advertiser Create New Method

Note: 0x004C is a company ID defined in iBeacon payload format. In this example,

synchronizing the setting with FW source code for the filter policy is needed (refer to
CT_scan.c : IBEACON_PATTERN).

12.2 Beacon ID

This Application will NOT use BT ADDR to identify the peer device instead of Beacon

ID. Beacon ID is from the UUID field of iBeacon payload. It will take byte 0~5 of UUID
as Beacon.

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 48

Atmosic

12.3 Beacon Logger Process

In Beacon Logger Process, each received iBeacon will keep/update the data field
defined in device_info_t structure, see Figure 42 and Table 9.

All the data will be kept in the RAM and use linked lists (scan_list and record_list) to
manage the buffer usage. For each received iBeacon, the Application will search
through the linked list (scan_list) using Beacon ID.

If this is a new Beacon ID, the Application will create a new entry into scan_list.

If there is already a Beacon ID in scan_list and duration is longer than the proximity
interval, it will be removed from scan_list and inserted into records_list.

If there is already a Beacon ID in scan_list and record_list and duration is longer than
proximity interval, the proximity counter in records_list will be updated.

If there is already a Beacon ID in scan_list and duration is longer than nearby timeout,
it will be removed from scan_list and inserted into records_list.

Once the size of records_list is more than 4 Kbyte (a flash sector), it will be flushed to
flash. In this application, the oldest data in flash will be overwritten when it is full.
Please check bls_scan_report_ram_to_flash() in top_mmi.c for more detail about flash
record write operations See Figure 43 for the flows.

.device_info-{
-+co_list hdr_t-hdr;
«ruint32 t-start_time;
«ruint32 t-rx_time;
«+uintle t-proxi_cnt;
‘max_rssi;

«+uint8 t-beacon_type;
--uint8 t-beacon ID[1;

dev1ce info_t;

Figure 42 - device_info_t Structure for Scan

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 49

Table 9 - device_info_t Structure for Scan

First received time (unit: second)

start_time
rx_time
proxi_cnt
max_rssi
beacon_type

beacon_ID

Atmosic

Last received time (unit: second)

Counter: Received the same Beacon ID in proximity internal.

Maximum received RSSI value

Is TAG_IBEACON or TAG_MY_BEACON

Beacon ID

[scan_list) Y

s = scan_find_dev _1

¢ Create new entry
o scan list :

scan_device_put

(duration of s)
> nearby timeout

i

duration of s}
> proximity interval

¥

scan_beacon_print

{record_list)
r=scan_find_dev

1

{duraticn of ry
> nearby timeout

¥

| remowve from scan list

- put to record_list

scan_record_put(s)
h
record_list = 4K
M ¥
bls_scan_report_r

¥ am_to_flash

i

scan_record update

Figure 43 - Beacon Logger Process

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060

50

Atmosic

13. Bluetooth LE GATT Services

Generic Access and Generic Attribute service will be created by the SDK framework
automatically. Standard DIS and customized service will be added in top_mmi.c
(s_ble_init). See below:

atm_gap_prf_reg(BLE_DISS, app_bass_param());
CT_gatt_create_prf();

atm_gap_prf_reg(BLE_ATMPRFS, NULL);

Table 10 - Bluetooth LE GATT Service UUID

Service Name UuUID Note

Generic Access 0x1800

Generic Attribute 0x1801

Device Information 0x180A

Customized service - a0a0a0ao... Refer to cfg_svc_uuid of CT_gatt.c

Activation and Adv. Parameter Setting Service

Customized service - b0b0ObObO... Refer to bls_svc_uuid of CT_gatt.c
Beacon logger

See Figure 44 for Activation and Advertising Parameter Service.

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 51

Atmosic

Unknown Service
UUID: aDa0a0a0-a0a0-a0a0-a0a0-a0a0a0a0a0al
PRIMARY SERVICE

L mmi_cfg_data_handler

Unknown Characteristic S 2%
UUID: a1aOaOaO-aOaO-aOaO-aOaO-aOaOaOaOaOaJ P
Properties: READ, WRITE Cfg command Char™"

-~

-

aOaOaOaO-aO(}aOaO-aOaO-aOaOaOaOaOaO

ala0a0a0-a0a0-a0a0-a0a0-a0a0a0alalal

Figure 44 - Activation and Advertising Parameter Service

See Figure 45 for Beacon Logger Service.

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 52

Atmosic

Unknown Service Beacon Logger Service

UUID: bObObObO-b0b0-b0b0-b0b0-b0bObObOLOLO

PRIMARY SERV S‘orage Capacny Char.

Unknown Characteristic QR VAL_BLS_CHAR_STORAGE_CAP

UUID: b1b0b0b0-b0b0-b0b0-b0b0-bObOLObOLODT
Properties. READ \yse4 Capacity Char.

Unknown Characteristic ¥ __bis_char_used_cap
UUID: b2b0b0b0-b0b0-b0b0-bOb0-b0b0ObObObObL2

"I(V‘u i

READ One beacon record size Char.

Unknown Characteristic #_. VAL_BLS_CHAR_RECORD_SIZE

UUID: b3b0b0b0-b0b0-b0b0-b0bO-bObObObObOL3

Properties READ g § Command Char.

Unknown Characteristic L 2 mmi_bls_cmd_handler

UUID: b4b0bOb0o-b0b0-b0b0-bOb0-bObObObObOb4 P |

Properties. READ, WRITE pra_reconte_ bl
CCC Char.

Unknown Characteristic i

UUID: bSbobOb0-b0b0-b0b0-b0bO-bObObOLOLOLS

Properties: NOTIFY 4 bis_records_cced

Descriptors: v

Client Characteristic Configuration "ﬂ

UUID: 0x2902 e

app_att_handle[-=-ble_atmprfs_create_add_svec(

app_att_handle[]1-=-ble_atmprfs_add_char(

);

app_att_handle[1-=-ble_atmprfs_add_char(

);

app_att_handle[
ble_atmprfs_add_char(

2"

app_att_handle[1-=-ble_atmprfs_add_char(

’);

app_att_handle[1-=-ble_atmprfs_add_char(

app_att_handle[]-=-ble_atmprfs_add_client_char_cfg();
Figure 45 - Beacon Logger Service

13.1 Command handler

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 53

Atmosic

Below are two characteristics to handle attribute write requests, see Figure 46 and
Figure 47. The data buffer is 8 bytes defined in “APP_DATA_SIZE”.
mmi_cfg_sub_command() API will handle the write request from Mobile APP.

BLS Command Characteristic:

Unknown Characteristic V. A

UUID: b4b0b0b0-b0b0-b0b0-b0b0-b0b0bObObOb4
Properties: READ, WRITE

Figure 46 - BLS Command Characteristic

Cfg. Command Characteristic:

Unknown Characteristic X

UUID: aTla0a0a0-a0a0-a0a0-a0a0-a0a0a0alalal
Properties: READ, WRITE

Figure 47 - Cfg. Command Characteristic

Use the “sub_cmd_payload” data structure to pack the command. See Figure 48.

[/ -Command -Payload
-sub_cmd_payload-{

-« --uintd_t-command,

Fg_field-cfg_tag,
field-cfg_b_logger;
u d field-cmd_up_ref_time;
-retrieve_cmd_field-ecmd_retrieve;

sub_cmd_vale-sub_cmd,;
- -__PACKED;

Figure 48 - Common Command Payload Format

The command field is always “0x00” defined in “APP_TAG_CFG” and uses a sub_cmd
field to identify the command purpose. See Figure 49 and Table 11.

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 54

r

. {
- -CMD_TAG_CFG-
-CMD_BLS_CFG,

. «CMD_UP_REF_TIME,
- CMD_RETRIEVE,

}-sub_cmd_vale;

Figure 49 - Sub Command Value

Atmosic

CMD_TAG_CFG is for Cfg Command Characteristic and CMD_BLS_CFG,
CMD_UP_REF_TIME and CMD_RETRIEVE are for BLS Command Characteristic.

Table 11 - Sub Command Table

Sub Command

Purpose

CMD Raw Buffer Example

CMD_TAG_CFG Let Mobile APP to overwrite: 66
app_env.config.act_status OB 00 // advertising interval unit:
app_env.config.en_enc 100ms
app_env.config.adv_interval 8o // beacon type
. 30 // enable activation and
app_env.config.tag_type iy
Refer to Table 8 - Tag ID 0xAB - encryption
) 00 00 // reserve
APP_CONFIG Flash NVDS Settings 00 // sub-cmd - CMD_TAG_CFG
CMD_BLS CFG Let Mobile APP to overwrite: 66
app_env.config.rssi_filter - 98 // rssi filter
app_env.config.proximity_interval 05 // proximity interval
app_env.config.scan_period 0A // scan period
. . OA 00 // scan duration
app_env.config.scan_duration
Refer to Table 8 - Tag ID OxAB 00 /] reserve
Qgres—"ad L D - 01 // sub-cmd - CMD_BLS_CFG
APP_CONFIG Flash NVDS Settings
CMD_UP_REF_TIME | Let Mobile APP to update system time 66
XX XX XX xx // new system time

00 00 // reserve
02 // sub-cmd - CMD_UP_REF_TIME
CMD_RETRIEVE Let Mobile APP to retrieve beacon logger 66
recorded in flash sector 00 00 00 00 00 00 // reserve

03

// sub-cmd - CMD_RETRIEVE

The command raw buffer can be saved as a profile in nRF connect APP for testing. See

Figure 50.

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060

55

Atmosic

Saved Swipe to delete records
CT_GetRpt
O 6July2020,1413
0x6600000000000003

CT_SetRefTime

O 6July2020,14:11
0x660000FF00000002
CT_BLS_Cfg

O 6uly2020,14:10
0x6698050A0B000001
CT_TagConfig

O 6July2020,14:09
0x660A000003000000

Figure 59 - Command Profile

13.2 Software Real Time Clock

The Application will have one second timer and counter update into sec_cnt of
CT_scan.c.

When the device enters hibernation, the device will retain one second counter and
current system clock time. The Application will restore them after waking up from
hibernation. The Application can adjust the sec_cnt to compensate for the duration of
hibernation. Twelve hours (defined in INTERVAL_HIB_SEC) is the default value that
the device will wake up automatically in hibernation mode to update the one second
counter. Mobile APP can use GATT service (submit CMD_UP_REF_TIME) to update
absolute time to device, then the start_time of beacon logger will use this absolute time
base. See Figure 51.

SW RTC: local time can keep and adjust after wake up from hibernation

-———-Enter Hibernation—--

Figure 51 - Software Real Time Clock

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 56

Atmosic

13.3 Retrieve Beacon Logger

Beacon logger data saved in the flash sector can be retrieved by Mobile APP. Mobile
APP needs to enable the notification property, then send CMD_RETRIEVE command.

See Figure 52.

0b0-b0b0-b0bObOBObOLO:

b0-b0b0-b0b0-b0b0-b0bObObObOb2

Characteristic
b0b0-b0b0-b0b0-b0b0-bObObObObOLI

cteristic :
bOb0-b0b0-b0bO-b0bObOLOLODA
‘?,WR

Figure 52 - Enable Notification Property

13.4 MTU size

To have better performance, Mobile APP can perform MTU exchange before sending
CMD_RETRIEVE command. The MTU size is set to 259 defined in
CFG_GAP_MAX_LL_MTU (param_gap.h). The MTU size should be larger than the
buffer size used to send notification packets defined in SIZE_BLS CAHR_RECORDS.
To increase SIZE_BLS CAHR_RECORDS, please also increase
CFG_GAP_MAX_LL_MTU to gain better transmit performance. See Figure 53.

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 57

Atmosic

‘Enable CCCDs

€ Read remote RSSI

Reliable write

'Request connectic

‘Request MTU

Figure 53 - Request MTU

13.5 Notify Packet Format to Report Beacon Logger

mmi_mv_flash_data_to_list() API will unpack beacon logger data from the flash
sector then pack into the notification packet. record_info structure is the format
reporting beacon logger to Mobile APP using GATT notification, see Figure 54. The
upper layer of example code will use 256 as buffer size defined in

SIZE_BLS CAHR_RECORDS and concatenate each beacon information, then call
gatt_records_send() API to send notification packet.

Figure 54 is the notification packet buffer parser example:

9820 ¢ Empty LE Packets (x 1662, 4retries, 47.65)
18'527 @ fa ATT Write Transaction (DBEACO17-1093-E400-C8A4-000000000005: 00 00 00 O 00 00 00 00 54 00 00 BD AA 42 38 FF)
18535 @ ¢ Empty LE Packets (x 58, 1.655)
18'910 # ﬁ ATT Write Transaction (Client Characteristic Configuration: 1otificztions=Enabled, Indications =Disabled)
18916 @t Empty LE Packets (x 50, 1.325)
19'168 5% ATT Unknown Packet
19217 @ Empty LE Packets (x 125, 3.35)
19887 @ f@ ATT Write Transaction (DBEACO17-1099-E400-C8A4-000000000005: 00 00 00 00 00 00 00 00 5400 00 03 00 00 00 EO)
8 B ATT Notification Packet (OBEACO17-1099-E400-C8A4-O0 C3FA 5800 11 1100 00 00 00 OF 00 C9 00 2706 5800 11 ...
19923 @ " EmptyLE Packets (x 251, 7.25)

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 58

Atmosic

52 Details | &% Instant Piconet
Raw data o x
Data type: Packet Raw Data - Search -

o1 2 3 4 5 6 7 8 9 L B C D E F 0 1 0123456789ABCDEFO1 A
Ox0000: 14 31 2D OO0 04 0O 1B 23 00 F'S Fi 58 00 11 11 00 00 0O =L F Zovinan
Ox0012: OO0 OF OO0 C5S 00 27 D6 5B OO 11 11 OO0 OO0 OO0 0D OC OO C8 ...uWs Delasvnnnnnas
Ox0024: 00 77 6C SE 00 11 11 OO0 0O OO OO OD OO C7 0O 3D FO A7 L e =,
Ox0036:

v

< >

Figure 54 - Notification Beacon Report

The raw data in the notification buffer is “C3 FA 58 00 11 11 00 00 00 00 OF 00 C9 00
27 D65B 001111 000000000C00C800776C5E001111000000000DOO0OC7
00”.

The Mobile APP can base on “Beacon report format” (Figure 55) to parse. Table 12
shows the beacon report parameters.

-record_info-{
-uint32 t-start tiwe,
-uint8_t-beacon_ID[6];

-uintl6 _t-proxi_cnt;

-max_rssi,
-uiﬂtE_t-heacmn_type;
_PACKED;

Figure 55 - Beacon Report Format

Table 12 - Beacon Report Parameters

C3 FA 5800 1111 00 00 00 00 OF 00
27 D6 5B 00 1111 00 00 00 00 0C 00 C8 00
77 6C 5E 00 1111 00 00 00 00 0D 00 C7 00

Mobile APP can use proximity counter and proximity interval to calculate how long the
user is nearby with Beacon ID owner.

14. Console Log for Beacon Record Dump

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 59

Atmosic

Refer to MMI event and behavior (event #3-2 and #3-3) to trigger the dump process.
There will be four "\n" characteristics at the front of the dump table, and two "\n"
characteristics at the end of the dump table.

14.1 Show Current Record List in RAM

Print out the record list per 30s until the user triggers the event #3-2 (short click) to stop
this periodic report. See Figure 56.

Figure 56 - Show Current Record List in RAM

14.2 Retrieve Flash Record Beacon List

1) Each 4 k flash sector can store ~150 beacon log entries.

2) For testing, the user can use the event #3-3 to trigger flushing record beacon
flash sectors (enter connectable advertising stage). After performing this flash
record dump, it will erase flash sectors that are used by beacon loggers.

3) proximity cnt: Indicates how long will stay near the proximity tag (unit is scan
period, in Figure 57 scan period is 10 seconds.)

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 60

42¢
411
42¢
42¢
4
42
42¢
411
4
42¢

Figure 57 - Retrieve Flash Record Beacon List

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060

Atmosic

14.3 Leave and Return - Nearby Timeout Case

Beacon ID[9e:ef:48] leave and return after Nearby Timeout (2*scan period = 2*60 =
120 secs), which will create new record entry for Beacon ID[9e:ef:48]

Nearby timeout configuration: (in CT_scan.c)
#define NEARBY_TIME_MUL (2) //unit: scan period

See Figure 58.

Figure 58 - Leave and Return - Nearby Timeout Case

14.4 Leave and Return - Still In Nearby Timeout

Beacon ID[6f:f6:0e] leave and return quickly within nearby timeout. It will not create
new record entry. It's proximity counter will be less than others. See Figure 59.

Figure 59 - Leave and Return - Still in Nearby Timeout Case

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 62

Atmosic

15. OTA
15.1 Enable Atmosic OTA Service

Add OTAPS module into PROFILES of the makefile.

Add ble_otps module into FRAMEWORK_MODULES of the makefile.
PROFILES += DISS BASS OTAPS

FRAMEWORK_MODULES += app_gap ... ble_otaps

15.2 ATM2202 Flash Layout

The makefile will check if enabling “Atmosic OTA Service” then switch to use the flash
layout for OTA. See Figure 60.

0x0000,0000
0x0002,0000

FLASH_SIZE = 0x80000 0x0007,8000

NVDS_SIZE = 0x8000

USER_SIZE = 0x58000 0x0008,0000

0x000A,0000

0x00F8,0000

0x0100,0000
Figure 60 - Flash Layout for OTA

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 63

Atmosic

15.3 Build Firmware for EVK

Build and download OTA-enabled firmware:

make run_all ERASE_UPGRADE_DATA=1 BOARD=mM2202
CFG_GPIO_MMI_BTN_ACTIVE_LOW:=1

Note: Will have the following console message - “Erasing upgd sector ...”

Build OTA Image for APP:

make clean
make build_flash_nvds
make build_archive BOARD=m2202 CFG_GPIO_MMI_BTN_ACTIVE_LOW:=1

Note: CFG_xxx environment variables depend on your hardware board

15.4 SW Virtual Record Pool for OTA

See Figure 61.

, 0x0000,0000
0x0002,0000 bank0 [T 060000,0000
O0x0007 8000 i

Size = 1MB | 608,000 ﬁﬂua| :
& —1 CT_ota_offset_adj ~— *"™®' | |704xs
: Pmc:;::}l{m | |B92KBT2)
DxD00A,0000 A T
ank1
OX000F, 8000 : :
booo———-! OX00DB,0000
F 0x0010,0000

Figure 61 - SW Virtual Record Pool for OTA

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 64

Atmosic

Revision History

Date Version Description

May 13, 2022 0.60 Updated for SDK 5.1.0 release.
April 14, 2021 0.54 Undated format, no content change.
March 29, 2021 0.53 Undated Quick Start section.
December 2, 2020 0.52 Corrected typos.

November 27, 2020 0.51 Corrected typos.

November 23, 2020 0.50 Initial version created.

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 65

ATMOSIC TECHNOLOGIES — DISCLAIMER

This product document is intended to be a general informational aid and not a substitute for any
literature or labeling accompanying your purchase of the Atmosic product. Atmosic reserves the right to
amend its product literature at any time without notice and for any reason, including to improve product
design or function. While Atmosic strives to make its documents accurate and current, Atmosic makes
no warranty or representation that the information contained in this document is completely accurate,
and Atmosic hereby disclaims (i) any and all liability for any errors or inaccuracies contained in any
document or in any other product literature and any damages or lost profits resulting therefrom; (ii) any
and all liability and responsibility for any action you take or fail to take based on the information
contained in this document; and (iii) any and all implied warranties which may attach to this document,
including warranties of fitness for particular purpose, non-infringement and merchantability.
Consequently, you assume all risk in your use of this document, the Atmosic product, and in any action
you take or fail to take based upon the information in this document. Any statements in this document in
regard to the suitability of an Atmosic product for certain types of applications are based on Atmosic’s
general knowledge of typical requirements in generic applications and are not binding statements about
the suitability of Atmosic products for any particular application. It is your responsibility as the customer
to validate that a particular Atmosic product is suitable for use in a particular application. All content in
this document is proprietary, copyrighted, and owned or licensed by Atmosic, and any unauthorized use
of content or trademarks contained herein is strictly prohibited.

Copyright ©2020 - 2022 by Atmosic Technologies. All rights reserved. Atmosic logo is a registered
trademark of Atmosic Technologies Inc. All other trademarks are the properties of their respective
holders.

Atmosic

Atmosic Technologies | 2105 S. Bascom Ave. | Campbell CA, 95008
www.atmosic.com

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060

	User Guide
	Table of Contents
	List of Figures
	List of Tables
	1. Overview
	1.1 Quick Start

	2. Application States
	2.1 MMI events and behavior
	2.2 Sub states
	2.3 Compile options for initial state

	3. Software Modules
	3.1 Module description
	3.2 Module hierarchy

	4. Message Sequence Chart
	4.1 Power on, MMI on, and MMI off
	4.2 Bluetooth LE init. and start connectable pairing advertising (CAVD)
	4.3 Connectable pairing advertising (CADV) timeout
	4.4 Start beacon advertising activity
	4.5 Update iBeacon status field of adv. payload
	4.6 Connection indication
	4.7 Disconnection indication
	4.8 GAP Pairing

	5. Hardware Setup
	5.1 PIN Setup
	5.2 Configure flash layout
	5.3 Flash sector layout
	5.4 Interface board for console log

	6. Application defined flash NVDS
	6.1 Device unique parameters (Tag ID:0xAA)
	6.2 Configuration parameters (Tag ID: 0xAB)
	6.3 Apply the change
	6.4 Update device UUID of Advertisement payload

	7. Default Parameters
	7.1 Advertisements
	7.2 GAP Parameter
	7.2.1 Connection Parameter Negotiation
	7.2.2 Generic Access Device Name
	7.2.3 Generic Access Appearance
	7.2.4 Security Level

	7.3 Scan parameter

	8. Button
	9. Hibernation Management
	10. GATT Service Create/Read/Write
	10.1 Create GATT service
	10.2 Handle ATT Read
	10.3 Handle ATT Write

	11. Address Modes
	12. Scan Device Flow
	12.1 Create iBeacon Advertiser
	12.2 Beacon ID
	12.3 Beacon Logger Process

	13. Bluetooth LE GATT Services
	13.1 Command handler
	13.2 Software Real Time Clock
	13.3 Retrieve Beacon Logger
	13.4 MTU size
	13.5 Notify Packet Format to Report Beacon Logger

	14. Console Log for Beacon Record Dump
	14.1 Show Current Record List in RAM
	14.2 Retrieve Flash Record Beacon List
	14.3 Leave and Return - Nearby Timeout Case
	14.4 Leave and Return - Still In Nearby Timeout

	15. OTA
	15.1 Enable Atmosic OTA Service
	15.2 ATM2202 Flash Layout
	15.3 Build Firmware for EVK
	15.4 SW Virtual Record Pool for OTA

	Revision History

