
CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060

ATM2/ATM3 CT_Tracing
Example
User Guide

SUMMARY: This document describes the settings, functionality, and code flow of the

CT_Tracing example code running on an Atmosic-based Bluetooth LE system

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 2

Table of Contents

1. Overview 7

1.1 Quick Start 7

2. Application States 12

2.1 MMI events and behavior 13

2.2 Sub states 15

2.3 Compile options for initial state 16

3. Software Modules 16

3.1 Module description 16

3.2 Module hierarchy 17

4. Message Sequence Chart 17

4.1 Power on, MMI on, and MMI off 17

4.2 Bluetooth LE init. and start connectable pairing advertising (CAVD) 18

4.3 Connectable pairing advertising (CADV) timeout 20

4.4 Start beacon advertising activity 21

4.5 Update iBeacon status field of adv. payload 23

4.6 Connection indication 24

4.7 Disconnection indication 25

4.8 GAP Pairing 26

5. Hardware Setup 27

5.1 PIN Setup 27

5.2 Configure flash layout 28

5.3 Flash sector layout 29

5.4 Interface board for console log 31

6. Application defined flash NVDS 32

6.1 Device unique parameters (Tag ID:0xAA) 32

6.2 Configuration parameters (Tag ID: 0xAB) 32

6.3 Apply the change 33

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 3

6.4 Update device UUID of Advertisement payload 33

7. Default Parameters 34

7.1 Advertisements 34

7.2 GAP Parameter 35

7.2.1 Connection Parameter Negotiation 35

7.2.2 Generic Access Device Name 36

7.2.3 Generic Access Appearance 36

7.2.4 Security Level 36

7.3 Scan parameter 37

8. Button 38

9. Hibernation Management 40

10. GATT Service Create/Read/Write 41

10.1 Create GATT service 41

10.2 Handle ATT Read 42

10.3 Handle ATT Write 43

11. Address Modes 44

12. Scan Device Flow 46

12.1 Create iBeacon Advertiser 47

12.2 Beacon ID 48

12.3 Beacon Logger Process 49

13. Bluetooth LE GATT Services 51

13.1 Command handler 53

13.2 Software Real Time Clock 56

13.3 Retrieve Beacon Logger 57

13.4 MTU size 57

13.5 Notify Packet Format to Report Beacon Logger 58

14. Console Log for Beacon Record Dump 59

14.1 Show Current Record List in RAM 60

14.2 Retrieve Flash Record Beacon List 60

14.3 Leave and Return - Nearby Timeout Case 62

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 4

14.4 Leave and Return - Still In Nearby Timeout 62

15. OTA 63

15.1 Enable Atmosic OTA Service 63

15.2 ATM2202 Flash Layout 63

15.3 Build Firmware for EVK 64

15.4 SW Virtual Record Pool for OTA 64

Revision History 65

List of Figures

Figure 1 - Random Address Message in Console Log

Figure 2 - Booting Message in Console Log

Figure 3 - MMI On Message in Console Log

Figure 4 - Connectable Advertisement Timeout Message in Console Log

Figure 5 - CT_Tracing Configuration Setting Message in Console Log

Figure 6 - Enable Scan Message in Console Log

Figure 7 - Scanned iBeacon Message in Console Log

Figure 8 - iBeacon Payload

Figure 9 - Connection Message in Console Log

Figure 10 - Bluetooth LE GATT Service in Mobile APP

Figure 11 - MMI Transitions

Figure 12 - Detailed State Transitions

Figure 13 - Module Hierarchy

Figure 14 - Power On, MMI On and MMI Off

Figure 15 - Bluetooth LE Initialization and Advertising Activity Creation

Figure 16 - Advertising Activity Created to Start

Figure 17 - Connectable Pairing Advertising Timeout

Figure 18 - Start iBeacon and Create Advertising Activity

Figure 19 - Start iBeacon and Start Advertising Activity

Figure 20 - Update iBeacon Advertising Payload Periodically

Figure 21 - Connection Indication

Figure 22 - Disconnection Indication

Figure 23 - Pairing Request Indication

Figure 24 - Flash Layout Message

Figure 25 - Default Layout of ATM2202

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 5

Figure 26 - Default Layout of ATM22x1

Figure 27 - UART Console Pin of Interface Board

Figure 28 - iBeacon Data Payload

Figure 29 - Keil Configuration Wizard for Advertisement Parameter

Figure 30 - Connection Parameter Setting

Figure 31 - Keil Configuration Wizard for GAP Parameters

Figure 32 - Keil Configuration Wizard for Scan Parameters

Figure 33 - Register User Input to top_mmi_input.c

Figure 34 - Sequence Chart of CT_button and top_mmi_input

Figure 35 - GATT Callbacks

Figure 36 - Service Creation

Figure 37 - GATT Read

Figure 39 - Scan Device Report Filter Policy

Figure 39 - Scan Device Report Filter Policy

Figure 40 - iBeacon Advertiser Clone Method

Figure 41 - iBeacon Advertiser Create New Method

Figure 42 - device_info_t Structure for Scan

Figure 43 - Beacon Logger Process

Figure 44 - Activation and Advertising Parameter Service

Figure 45 - Beacon Logger Service

Figure 46 - BLS Command Characteristic

Figure 47 - Cfg. Command Characteristic

Figure 48 - Common Command Payload Format

Figure 49 - Sub Command Value

Figure 50 - Command Profile

Figure 51 - Software Real Time Clock

Figure 52 - Enable Notification Property

Figure 53 - Request MTU

Figure 54 - Notification Beacon Report

Figure 55 - Beacon Report Format

Figure 56 - Show Current Record List in RAM

Figure 57 - Retrieve Flash Record Beacon List

Figure 58 - Leave and Return - Nearby Timeout Case

Figure 59 - Leave and Return - Still in Nearby Timeout Case

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 6

Figure 60 - Flash Layout for OTA

Figure 61 - SW Virtual Record Pool for OTA

List of Tables

Table 1 - MMI State Descriptions

Table 2 - MMI Events and Behavior

Table 3 - Compile Option for Booting

Table 4 - Module Description

Table 5 - PIN Setup

Table 6 - Comparison of Targets

Table 7 - Flash NVDS Settings

Table 8 - Tag ID 0xAB - APP_CONFIG Flash NVDS Settings

Table 9 - device_info_t Structure for Scan

Table 10 - Bluetooth LE GATT Service UUID

Table 11 - Sub Command Table

Table 12 - Beacon Report Parameters

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 7

1. Overview

This application note describes the settings, functionality, and code flow of the

CT_Tracing example code running on an Atmosic-based Bluetooth LE system such as

a contact tracing wristband. This Bluetooth LE system will send advertisements, perform

scan, record scan results into flash, and initiate connectable advertisement for a Mobile

APP connection. When a connection is made, the Mobile APP can retrieve the beacon

logger record using GATT services. Advertising interval, scan duration and period, etc.

can be configured using the GATT service interface. Mobile APP can overwrite the

default settings.

Note: CT_tracing application uses iBeacon payload format. To test the scanning

function, please use any iBeacon device or create iBeacon using Mobile APP. Refer to

the Create iBeacon Advertiser section.

1.1 Quick Start

● Install Atmosic SDK x.y.z

● Refer to Pin Setup section

● Go to the CT_Tracing folder of the Atmosic SDK and type “make clean” then

“make run_all BOARD=m2202” to program flash. ” Press and hold the button for

5 secs (see MMI event and behavior), the LED will blink and start sending

pairing advertisements with “ATM-CTracing” as the device name. Refer to Flash

Sector Layout for more details.

Note: The BOARD setting can be “BOARD=<m2202|m2201|m2221|m2251|

m3201|m3221|m3231>

● In this application, the address will be generated randomly during boot up. Refer

to Address modes section for detail.

Random address can be found in the console log as shown in Figure 1.:

Figure 1 - Random Address Message in Console Log

● Console Message for different stages. After booting, see Figure 2:

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 8

Figure 2 - Booting Message in Console Log

○ MMI on (press and hold the button over 5 secs) and wait for timeout

Creating connectable advertisement (timeout is 30 secs), see Figure 3.

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 9

Figure 3 - MMI On Message in Console Log

Figure 4 shows advertising timeout:

Figure 4 - Connectable Advertisement Timeout Message in Console Log

CT_Tracing configuration setting, see Figure 5.

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 10

Figure 5 - CT_Tracing Configuration Setting Message in Console Log

Enter the Scan phase and print out the iBeacon device, then save into RAM. See

Figure 6.

Figure 6 - Enable Scan Message in Console Log

Connectable-advertisement: timeout is 30 secs.

If there is no connection, it will move to scan/iBeacon phase after the advertisement

timeout.

Found iBeacon, see Figure 7.

Figure 7 - Scanned iBeacon Message in Console Log

Refer to Scan Device Flow section.

○ In the scan phase, the advertisement is also alive by sending an iBeacon

and updating the “major” field of iBeacon payload per 500 ms (defined in

INTERVAL_UPDATE_IBEACON_PAYLOAD). The default advertisement

interval is 255 ms. If you are using Mobile Scan APP to check this

iBeacon, you will see the “Major” value increase. Minor field reports

current battery level. Refer to Figure 8.

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 11

Figure 8 - iBeacon Payload

○ Connection Phase (press button and hold over 5 secs to enter

connectable advertisement, then use Mobile APP to connect).

Refer to Connection Parameter Negotiation and Figure 9.

Figure 9 - Connection Message in Console Log

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 12

Mobile APP can discover Bluetooth LE services as shown in Figure 10. Refer to

Bluetooth LE GATT Services for more information.

Figure 10 - Bluetooth LE GATT Service in Mobile APP

○ Disconnection

After disconnection, the device will move to scan+iBeacon concurrent

mode.

2. Application States

In this application, four MMI (Man Machine Interface) states and nine sub states are

defined. The MMI states transition rely on the traversal of sub-states which are triggered

by MMI events. See Table 1 for state descriptions.

Table 1 - MMI State Descriptions

MMI State Name Description

MMI Off Device is in hibernation mode.

MMI On CADV Device is sending connectable advertisements and waiting for connection.

CONN Device is connected for setting and data retrieving.

IBCN Device is sending iBeacon advertisements and scanning

See Figure 11 for top MMI states transitions.

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 13

Figure 11 - MMI Transitions

2.1 MMI events and behavior

MMI events trigger state transitions of the application to accomplish user scenarios. The

MMI events in this application can originate from GPIO button, ADV timeout, hibernation

timeout or BT events.See Table 2 for events and their behavior.

Table 2 - MMI Events and Behavior

Event
Number

Event
Type

Event Condition LED Behavior Transitions/
Description

1 [Button]

Holding for 5 secs.
Source default defined:

*APP_BTN_POWER_ON_TIME

Blink once every 3

seconds for 30 seconds

Source default defined:

*APP_LED_TAGON_PER

IOD

*APP_LED_TAGON_DUR

ATION

[Transition]

MMI Off --> CADV

2 [Button] Holding for 30 secs.
Source default defined:

*APP_BTN_POWER_OFF_TIME

Blink 2 times (once every

200 ms)

Source default defined:

*APP_LED_TAGOFF_PE

RIOD

*APP_LED_TAGFF_DUR

ATION

[Transition]

CADV --> MMI Off:

or

[Transition]

IBCN --> MMI Off

3 [Button] Holding for 5 secs.
Source default defined:

Blink once every 3

seconds for 30 seconds

[Transition]

IBCN --> MMI Off

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 14

*APP_BTN_ENTER_CONNECTA
BLE

Source default defined:

*APP_LED_TAGON_PER

IOD

*APP_LED_TAGON_DUR

ATION

3-1 [Button] Short click 3 times
Source default defined:

*BTN_SHORT_PRESS_TO_BAS
_REPORT

Battery level 80 – 100%:

LED Blinks 5 times

Battery level 60 – 80%:

LED Blinks 4 times

Battery level 40 – 60%:

LED Blinks 3 times

Battery level 20 – 40%:

LED Blinks 2 times

Battery level < 20%:

 LED Blinks 1 time

(once every 200 ms)

1. Battery test limited to 2

tests in 24 hours

(mmi_led_quick_blink_ti

mes)

2. Only allowed in IBCN

state.

3-2 [Button] Short click 5 times
Source default defined:

*BTN_SHORT_PRESS_SHOW_R
AM_RECORD

N/A 1. Only for debug build FW

2. Suppress scan report

console message

3. Every 30 secs to show

report in console

Note: Short click to enable

scan report console message

(trigger by #2)

3-3 [Button] Short click 7 times
Source default defined:

*BTN_SHORT_PRESS_RETREIV
E_FLASH_RECORD

N/A 1. Only for debug build FW

2. Suppress scan report

console message

3. Read flash sector then

print data out

4. Erase flash sector

5. Enter iBeacon+scan

finally

Note: Short click to enable

scan report console message

(trigger by #2)

3-4 [Button] Short click 9 times
Source default defined:

*BTN_SHORT_PRESS_TO_REB
OOT

LED Comes ON for 2

seconds then blinks 2

times (once every 200 ms)

[Transition]

->MMI Off

4 [ADV
timeout]

30s after entering CADV
Source default defined:
*ADV0_START_DURATION

LED off [Transition]

CADV->IBCN

5 [Hiberna
tion
timeout]

12 hour after entering MMI Off.
Source default defined:
*INTERVAL_HIB_SEC

N/A Update internal second

count.

[Transition]

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 15

MMI Off->MMI Off

6 [BT
disconne
cted]

N/A If updating new

configuration data into

flash nvds:

LED Blinks 4 times

(once every 200 ms)

May update new

configuration data into flash

nvds.

[Transition]

CONN --> CADV

If not updating new

configuration data into

flash nvds:

LED off

7 [BT
connect
ed]

N/A LED Blinks endless (once

every 500 ms)

Source default defined:

*APP_LED_CONN_PERI

OD

[Transition]

CADV-->CONN

8 [BT log
uploadin
g done]

N/A LED Blinks 4 times

(once every 200 ms)

The data was read out from

the BLS (Beacon Logger

Service) client.

2.2 Sub states

Since BT advertising and scanning utilize many APIs which need sequence controlling

the application uses atm_asm module to create sub states for them and use them to

accomplish the top MMI states transition. See Figure 12 for the detailed state transitions.

Figure 12 - Detailed State Transitions

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 16

2.3 Compile options for initial state

There are two compile options for top_mmi.c (BOOT_TO_HIBERNATION and

MMI_ON_TO), see Table 3.

Table 3 - Compile Option for Booting

BOOT_TO_HIBERNATION MMI_ON_TO Behavior

Define 0 After power up, enter hibernation. Wait for the button

to wake up and move to connectable advertisement

(CADV) and will enter iBeacon+scan (IBCN) after the

timeout happens.

It is the default setting

Define 1 1. After power up, enter hibernation.

2. Wait for the button to wake up and move to

iBeacon+scan (IBCN).

Undefine 0 After power up, move to connectable advertisement

(CADV) and will enter iBeacon+scan (IBCN) after

timeout happens.

Undefine 1 After power up, move to iBeacon+scan (IBCN).

3. Software Modules

3.1 Module description

In CT tracing example, nine C source files and thirteen C header files were included.

Please refer to Table 4 for the description.

Table 4 - Module Description

Location File Name Description

src/bt

CT_adv.c(.h) Advertisement payload and parameter updating.

CT_param_adv.h Advertisement compile configuration.

CT_gatt.c(.h) BLS (Beacon Logger Service) GATT operations.

CT_param_gap.h GAP compile configuration.

CT_scan.c(.h) Scan list and record list handling.

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 17

CT_parm_scan.h Scan compile configuration.

CT_ota.c(.h)
Firmware Over The Air (OTA) setting, information and

flow.

src/non_bt

CT_button.c(.h) GPIO button event module.

CT_cipher.c(.h) Crypto interface.

CT_nvds.c(.h) Record and NVDS interface..

src
top_mmi.c(.h) Flow and state control.

top_mmi_input.c(.h) Button event handler.

3.2 Module hierarchy

In CT tracing example, the top_mmi collaborates all other modules by handling events

from BT, button and timer. See Figure 13 for the module hierarchy.

Figure 13 - Module Hierarchy

4. Message Sequence Chart

4.1 Power on, MMI on, and MMI off

After power-on, the Application will enter hibernation. When the button is pressed and

held to meet number #1 trigger condition, the application will blink LED and enter “BLE

init” phase. When the button is pressed and held to meet number #2 trigger condition

behavior, the application will enter the “Hibernation” phase. See Figure 14.

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 18

Figure 14 - Power On, MMI On and MMI Off

4.2 Bluetooth LE init. and start connectable pairing advertising

(CAVD)

In this phase, the application will prepare to send connectable advertising for connection.

The Application needs to use “atm_adv_reg” to register a callback function to SDK

Framework. The Application can use “app_nvds” APIs to get Flash NVDS data. Before

sending advertising, the Application needs to create advertising activity using the

“atm_adv_create” API first. See Figure 15 for the period of Bluetooth LE Initialization and

advertising activity creation.

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 19

Figure 15 - Bluetooth LE Initialization and Advertising Activity Creation

After calling “atm_adv_create”, the Application will get an advertising activity ID from

“ble_adv_state_change” callback function. The Application will use activity ID to

configure Bluetooth LE advertising data and Bluetooth LE advertising scan response

data, then call atm_adv_start API to enable this advertising activity. See Figure 16 for

the period of advertising activity created to to start.

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 20

Figure 16 - Advertising Activity Created to Start

4.3 Connectable pairing advertising (CADV) timeout

When advertising is timeout, the Application will receive an “ATM_ADV_OFF” event

from the “ble_adv_state_change” callback function. The Application will base on

activation status value (default value loaded from Flash NVDS) to create iBeacon

advertisement or enter hibernation mode. See Figure 17.

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 21

Figure 17 - Connectable Pairing Advertising Timeout

4.4 Start beacon advertising activity

To create and start iBeacon advertising activity is the same as Connectable Pairing

Advertising.

The advertising interval of iBeacon can be overwritten by GATT service using Mobile

APP. The advertising interval will also be stored in Flash NVDS. The Application also

can use the “adv_up_ibeacon_param” API to change the advertising interval. Before

updating the advertising payload, the Application can use the “cipher_encrypt” API to

encrypt the payload. See Figure 18.

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 22

Figure 18 - Start iBeacon and Create Advertising Activity

iBeacon’s device UUID can be updated by the “adv_up_guid” API. See Figure 19. CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 23

Figure 19 - Start iBeacon and Start Advertising Activity

4.5 Update iBeacon status field of adv. payload
The iBeacon activity is alive so the application can use

“adv_up_ibeacon_status_payload” API to update the status field of iBeacon payload.

The example will have the “TEST_UPDATE_IBEACON_PAYLOAD” definition, which is

defined by default.

It will create one 500 ms timer to update the payload for iBeacon. The

“mmi_update_adv_timer” function can explain how to upgrade the payload of iBeacon.

See Figure 20.

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 24

Figure 20 - Update iBeacon Advertising Payload Periodically

4.6 Connection indication

The Application will receive a connection indication event via “p_conn_ind” callback

function of GAP callback. The Application will move to the connection state and turn off

LED. See Figure 21. CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 25

Figure 21 - Connection Indication

4.7 Disconnection indication

The Application will receive a disconnection indication event via

“ble_adv_state_change” callback function. The Application will record the configuration

data into Flash NVDS data if having data update. The Application will check activation

status configured using GATT service, then start iBeacon or enter hibernation. See

Figure 22.

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 26

Figure 22 - Disconnection Indication

4.8 GAP Pairing

The top_mmi will receive the pairing request indication event via “p_pair_req_ind”

callback function and it will call gap_pair_req_ind function to handle this event. In this

example, no bonding is set to complete the whole pairing process. See Figure 23.

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 27

Figure 23 - Pairing Request Indication

5. Hardware Setup

5.1 PIN Setup

Table 5 - PIN Setup

Setting Reference

Button GPIO setting PIN_CT_MMI_BTN used in CT_button.c

LED GPIO setting PIN_LED0 used in led_blink.c

Notes:

1) GPIO settings can be overwritten using PIN_CT_MMI_BTN, PIN_LED0 in build

time.

2) PIN_CT_MMI_BTN is active-high logic by default in this example code. For

active-low logic, apply the “CFG_GPIO_MMI_BTN_ACTIVE_LOW:=1” on make

command..

3) For ATM2202 EVK (J4: pin 39 as GPIO_9 (button), pin 40 as GPIO_10 (LED)),

use

a) make run_all BOARD=m2202CFG_GPIO_MMI_BTN_ACTIVE_LOW:=1

b) tie GPIO_9 to GND to simulate button press

4) For ATM2201 EVK (J4: pin 39 as GPIO_9 (button), pin 40 as GPIO_10 (LED)),

use

a) make run_all BOARD=m2201 CFG_GPIO_MMI_BTN_ACTIVE_LOW:=1

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 28

b) tie GPIO_9 to GND to simulate button press

5) For ATM2221 EVK (J4: pin 39 as GPIO_9 (button), pin 37 as GPIO_7(LED)),

use

a) make run_all BOARD=m2221 CFG_GPIO_MMI_BTN_ACTIVE_LOW:=1

b) tie GPIO_9 to GND simulate button press

5.2 Configure flash layout

For layout customization, the user could modify the USER_SIZE in “makefile” to have a

different beacon logger flash sector range. After applying this change, perform “make

clean” then “make run_all BOARD=m22022x1>”. If BOARD is not assigned, the

default is m2221.

Note: The BOARD setting can be “BOARD=<m2202|m2201|m2221|m2251|

m3201|m3221|m3231>

ifeq ($(BOARD),m2202)
ifneq (,$(filter OTAPS,$(PROFILES)))
FLASH_SIZE = 0x80000
NVDS_SIZE = 0x8000
ifdef FLASHROM
USER_SIZE = 0x10000
else
USER_SIZE = 0x58000
endif
PMU_CFG := VBAT_GT_1p8V_VDDIO_EXT
else #OTAPS
FLASH_SIZE = 0x100000
NVDS_SIZE = 0x8000
USER_SIZE = 0xD8000
PMU_CFG := VBAT_GT_1p8V_VDDIO_EXT
endif #OTAPS
else ifneq (,$(filter m2201 m2221 m2251 m3201 m3221 m3231
x2xx_emu,$(BOARD)))
ifdef FLASHROM
CFLAGS := $(filter-out -DCFG_OTA,$(CFLAGS))
NVDS_SIZE = 0x8000
USER_SIZE = 0x18000
else ifneq (,$(filter OTAPS,$(PROFILES)))
FLASH_SIZE = 0x40000
NVDS_SIZE = 0x8000
USER_SIZE = 0x18000
else

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 29

FLASH_SIZE = 0x80000
NVDS_SIZE = 0x8000
USER_SIZE = 0x58000
endif
else
 $(error "usage: make $(MAKECMDGOALS)
BOARD=<m2202|m2201|m2221|m2251|m3201|m3221|m3231>")
endif

User can confirm flash layout changes in makefile using following command

"make layout_info BOARD=m2202". Figure 24 below shows sample output.

Note: The BOARD setting can be “BOARD=<m2202|m2201|m2221|m2251|

m3201|m3221|m3231>”

Figure 24 - Flash Layout Message

5.3 Flash sector layout

There are three kinds of makefile targets used to program flash, run_all, run, and

push_flash_nvds. The run_all target programs the firmware and Flash NVDS. The run

target only program firmware. These two targets both cause the Record sector to be

erased. To keep the record sector, please assign PRESERVE_USER 1 on command

line. Table 6 shows comparison of targets.

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 30

Table 6 - Comparison of Targets

Target Firmware Program? NVDSProgram? Record Erased?

run_all Y Y Y

run Y N Y

run_all RESERVE_USER:=1 Y Y N

run PRESERVE_USER:=1 Y N N

push_flash_nvds N Y N

To have a clean environment for testing, please use “make run_allct”. The default

record sizes of ATM22x1 and ATM2202 W/WO OTA enabled are 0x30000

(0x18000*2), 0x58000, 0xB0000 (0x58000*2) and 0xD8000. Figure 25 shows the

default layout of ATM2202.

Figure 25 - Default Layout of ATM2202

Figure 26 shows the default layout of ATM22x1.

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 31

Figure 26 - Default Layout of ATM22x1

5.4 Interface board for console log
Your hardware device may only have a UART console pin (TX and GND pin). You can

use the Atmosic interface board as a UART level shifter and connect the USB1 port to

the PC using a USB cable. See Figure 27.

Figure 27 - UART Console Pin of Interface Board

1) Device’s UART TX pin connects to UART1_TX (JP24 of interface board, right

side)

2) Device’s GND pin connects to the upper side of JP9.

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 32

6. Application defined flash NVDS

The following application defined tag data will be used in this example. See Table 7.

Table 7 - Flash NVDS Settings

Tag ID Description tds file

0xAA Device Unique Parameters \tag_data\AA-APP_DEV_GUID_KEY\default.tds

0xAB Configuration Parameters \tag_data\AB-APP_CONFIG\default.tds

6.1 Device unique parameters (Tag ID:0xAA)

The following is the content of the .tds file, whose byte order is LSB first.

GUID
00 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF
Pairing Key
01 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
Device Key
00 10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0

6.2 Configuration parameters (Tag ID: 0xAB)

The following is the content of the .tds file, whose byte order is LSB first. This

parameter will map to nvds_app_config_t structure. Also see Table 8.

Advertising Interval (unit: ms)
FF 00
Enable Encryption
01
Activation Status
01
Tag Type
00
RSSI Filter Level
9C
Proximity Interval
36
Scan Period (unit: sec)
3C
Scan Duration (unit: 10ms)
54 00

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 33

Table 8 - Tag ID 0xAB - APP_CONFIG Flash NVDS Settings

Description Byte Size Unit/Type Note

Advertising Interval 2 ms iBeacon advertising interval.

Default: 255 (255 ms)

Enable Encryption 1 bool Payload to be encrypted. Null function for

customer to customize. Refer to CT_cihper.c

Default: 1

Activation Status 1 bool Enable activation will let devices to send

advertisements and scan after leaving

connectable-adv. Stage. Refer to Figure 17 -

Connectable Pairing Adv. Timeout

Default: 1

Tag Type 1 Advertisement

payload type

Advertisement is using iBeacon payload

format by default. Customers can extend this.

Default: 0

RSSI Filter Level 1 dBm Scanned beacon’s RSSI is larger than this

filter level will be logged.

Default: -100 dBm

Proximity Interval 1 second Scanned the same Beacon ID device will be

logged (or increase proximity counter) if the

receive time is larger than this.

Default: 54 (secs)

Scan Period 1 second Default: 60 (secs)

Scan Duration 1 10 ms Default: 840 (ms)

6.3 Apply the change

Using a text editor tool to open and edit the .tds file. Re-build the example code using

“make run_all”. The “device unique parameters” and “configuration parameters” will

program into the Flash NVDS sector.

6.4 Update device UUID of Advertisement payload

The Application will call “adv_up_uuid” API when creating pairing advertisements or

iBeacon advertisements. The Device UUID is from Flash NVDS. See Figure 28.

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 34

Figure 28 - iBeacon Data Payload

7. Default Parameters

7.1 Advertisements

All the advertisement parameters are defined in “CT_Tracing\src\bt\CT_param_adv.h”.

This header can support Keil IDE’s configuration wizard. Open this header file using

keil IDE to get a richer configuration interface. See Figure 29. Refer to the “Bluetooth

LE Advertisement Example Application Note” document to get more details.

Figure 29 - Keil Configuration Wizard for Advertisement Parameter

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 35

This example code uses two advertisement sets. One is for the pairing advertisement

and the other is for iBeacon advertisement. For the app_env_tag_t structure,

CFG_GAP_ADV_MAX_INST is set to 2. The first index is for pairing advertisements and

the other is for iBeacon. The connectable pairing advertisement and non-connectable

advertising are using the same index (IDX_PAIR_ADV). The example code will use the

index to access the array objects and change advertising parameters

typedef enum {
 IDX_PAIR_ADV,
 IDX_IBEACON
} adv_set_t;

atm_adv_create_t *create[CFG_GAP_ADV_MAX_INST];
atm_adv_start_t *start[CFG_GAP_ADV_MAX_INST];
atm_adv_data_t *adv_data[CFG_GAP_ADV_MAX_INST];
atm_adv_data_t *scan_data[CFG_GAP_ADV_MAX_INST];

The Application uses the index to access parameters and can modify all parameters at

runtime (see adv_up_ibeacon_param API as example).

About the payload of advertisement customization, users need to modify

“param_gap_adv.h”. See the following CFG_ADV0_DATA_ADV_PAYLOAD and

CFG_ADV0_DATA_SCANRSP_PAYLOAD definitions.

#define CFG_ADV0_DATA_ADV_PAYLOAD
0x1B,0xFF,0x66,0x66,0x01,0x01,0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0x10,0x11,0x12,0x13,0x14,0x15,0x16,0x00,
0x00,0x00,0x00,0x00,0x0A
// 0x41-'A' 0x54-'T' 0x4D-'M' 0x2D-'-' 0x43-'C' 0x54-'T' 0x72-'r' 0x61-'a' 0x63-'c' 0x69-'i' 0x6E-'n' 0x67-'g'
#define CFG_ADV0_DATA_SCANRSP_PAYLOAD
0x0D,0x09,0x41,0x54,0x4D,0x2D,0x43,0x54,0x72,0x61,0x63,0x69,0x6E,0x67,/*Appearance*/0x03,0x19,0x00,0x02

7.2 GAP Parameter

It is defined in “CT_Tracing\src\bt\CT_param_gap.h”. This header can support Keil

IDE’s configuration wizard. Open this header file using keil IDE to get a richer

configuration interface. See Figure 31.

7.2.1 Connection Parameter Negotiation

There are four related parameters:

CFG_GAP_CONN_INT_MIN/CFG_GAP_CONN_INT_MAX/CFG_GAP_CONN_TIMEO

UT/CFG_GAP_SLAVE_LATENCY. After connecting with Bluetooth LE master, the

device will perform connection parameter update negotiation. In app_gap.c -

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 36

gap_connect_param_nego(), param_nego is the parameter for connection parameter

negotiation. Customers can modify the parameter depending on the application. See

Figure 30.

Figure 30 - Connection Parameter Setting

7.2.2 Generic Access Device Name

CFG_GAP_DEV_NAME is used to show device name when Mobile APP connects to

the device and shows in “Generic Access” service.

7.2.3 Generic Access Appearance

CFG_GAP_APPEARANCE is used to show device name when Mobile APP connects

to the device and shows in “Generic Access Appearance” service.

7.2.4 Security Level

The pairing mode and service level security level will use “SEC_PROP” and

“SEC_BONDING” for configuration. The default is Unauthenticated no MITM

protection. CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 37

Figure 31 - Keil Configuration Wizard for GAP Parameters

7.3 Scan parameter

It is defined in “CT_Tracing\src\bt\CT_param_scan.h”. This header can support Keil

IDE’s configuration wizard. Open this header file using Keil IDE to get a richer

configuration interface. See Figure 32. CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 38

Figure 32 - Keil Configuration Wizard for Scan Parameters

8. Button

The button handle is controlled by two modules: top_mmi_input.c and CT_button.c.

The CT_button.c responds to the GPIO edge detection and timer measurement for

button pressing, release and hold. top_mmi_input.c provides the mechanism of

registering high layer user input events (hold, hold release and click) and reports them

to top_mmi.c. Figure 33 shows the code pieces about registering input events and its

callback function. The definition APP_BUTTON_HOLD_UNIT was defined in

CT_button.h to apply as the precision of the timer. It is also used as the qualification of

the time of click event.

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 39

Figure 33 - Register User Input to top_mmi_input.c

Figure 34 shows how top_mmi_input.c detects 1s hold release and 5s hold.

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 40

Figure 34 - Sequence Chart of CT_button and top_mmi_input

9. Hibernation Management

In this example code, the atm_pm module’s lock scheme is used to manage whether or

not to prevent entering a hibernation state. If all modules unlock hibernation, the

system will enter hibernation. Two locks were defined in this example code:

mmi_lock_hiber and button_lock_hiber. In the source file, atm_pm_lock() and

atm_pm_unlock() are the points where each module decides whether to lock or not.

Below is the brief list and description:

● mmi_lock_hiber

○ Used by top_mmi.c

○ Locked when BT resource needed.

● button_lock_hiber

○ Used by CT_button.c

○ Locked when timer needed

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 41

10. GATT Service Create/Read/Write

This section describes how CT_gatt.c uses ATMPRF (Atmosic Profile) APIs to create

the service and response of the GATT operations through the SDK framework. The

ATMPRF provides an easy way to help users create their own services quickly that just

need to register a few callback functions with the service creation API

(ble_atmprfs_add_svc(...)). In this example code, atmprfs_cbs is defined as callback

functions, shown in Figure 35.

Figure 35 - GATT Callbacks

The following four callback functions are needed:

● g_read_req: Called while peer read characteristics. Use ATMPRF API to provide

data here.

● p_write_req: Called while peer write characteristics.

● p_att_info_req: Called when peer use gatt prepare write. Return the right

characteristic value length here.

10.1 Create GATT service

There are 5 APIs used to create customization service, see also Figure 36.

● ble_atmprfs_create_add_svc: Add service.

● ble_atmprfs_add_char: Add characteristic.

● ble_atmprfs_add_client_char_cfg: Add client characteristic configuration

descriptor.

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 42

Figure 36 - Service Creation

10.2 Handle ATT Read
When the peer device tries to read data from characteristics, CT_gatt will receive an

event from the p_read_req callback. Then CT_gatt will reply to the data by calling

ble_atm_prfs_gattc_read_cfm. See Figure 37.

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 43

Figure 37 - GATT Read

10.3 Handle ATT Write

When the peer device tries to write data to characteristics, CT_gatt will receive an

event from the p_write_req callback, and it will inform top_mmi by calling

mmi_cfg_data_handler or mmi_bls_cmd_handler function. See Figure 38.

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 44

Figure 38 - GATT Write

Except for the normal operation, users can respond errors to the peer if the data is not

valid or the state is not allowed to write. In the example code, some wrong operations

with wrong data length, wrong data or wrong command are banned. Please check the

source file for more information.

11. Address Modes

There are four address modes in this example code. “Generate new Random Address

while Booting.” is default mode.

1. Generate new Random Address while Booting

In CT_param_adv.h:

#define CFG_ADV0_OWNER_ADDR_TYPE GAPM_STATIC_ADDR
#define CFG_ADV1_OWNER_ADDR_TYPE GAPM_STATIC_ADDR

In top_mmi.c - s_ble_init()

atm_gap_gen_rand_addr(GAP_STATIC_ADDR);

In CT_param_gap.h:

/*
#define CFG_GAP_OWN_STATIC_RANDOM_ADDR5 0xC0
#define CFG_GAP_OWN_STATIC_RANDOM_ADDR4 0x11
#define CFG_GAP_OWN_STATIC_RANDOM_ADDR3 0x22

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 45

#define CFG_GAP_OWN_STATIC_RANDOM_ADDR2 0x33
#define CFG_GAP_OWN_STATIC_RANDOM_ADDR1 0x44
#define CFG_GAP_OWN_STATIC_RANDOM_ADDR0 0x55
*/

2. Public Device Address

Example code will follow up Flash NVDS tag’s setting.

In param_gap_adv.h:

#define CFG_ADV0_OWNER_ADDR_TYPE GAPM_STATIC_ADDR
#define CFG_ADV1_OWNER_ADDR_TYPE GAPM_STATIC_ADDR

In top_mmi.c - s_ble_init()

//atm_gap_gen_rand_addr(GAP_STATIC_ADDR);

In param_gap.h:

/*
#define CFG_GAP_OWN_STATIC_RANDOM_ADDR5 0xC0
#define CFG_GAP_OWN_STATIC_RANDOM_ADDR4 0x11
#define CFG_GAP_OWN_STATIC_RANDOM_ADDR3 0x22
#define CFG_GAP_OWN_STATIC_RANDOM_ADDR2 0x33
#define CFG_GAP_OWN_STATIC_RANDOM_ADDR1 0x44
#define CFG_GAP_OWN_STATIC_RANDOM_ADDR0 0x55
*/

3. Fixed Random Address

In param_gap_adv.h:

#define CFG_ADV0_OWNER_ADDR_TYPE GAPM_STATIC_ADDR
#define CFG_ADV1_OWNER_ADDR_TYPE GAPM_STATIC_ADDR

In top_mmi.c - s_ble_init()

//atm_gap_gen_rand_addr(GAP_STATIC_ADDR);

In param_gap.h:

#define CFG_GAP_OWN_STATIC_RANDOM_ADDR5 0xC0
#define CFG_GAP_OWN_STATIC_RANDOM_ADDR4 0x11
#define CFG_GAP_OWN_STATIC_RANDOM_ADDR3 0x22
#define CFG_GAP_OWN_STATIC_RANDOM_ADDR2 0x33
#define CFG_GAP_OWN_STATIC_RANDOM_ADDR1 0x44
#define CFG_GAP_OWN_STATIC_RANDOM_ADDR0 0x55

4. Random Address Rotate

Re-new address timeout is 15 mins by default.

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 46

In param_gap_adv.h:

#define CFG_ADV0_OWNER_ADDR_TYPE GAPM_GEN_NON_RSLV_ADDR
#define CFG_ADV1_OWNER_ADDR_TYPE GAPM_GEN_NON_RSLV_ADDR

In top_mmi.c - s_ble_init()

//atm_gap_gen_rand_addr(GAP_STATIC_ADDR);

In param_gap.h:

/*
#define CFG_GAP_OWN_STATIC_RANDOM_ADDR5 0xC0
#define CFG_GAP_OWN_STATIC_RANDOM_ADDR4 0x11
#define CFG_GAP_OWN_STATIC_RANDOM_ADDR3 0x22
#define CFG_GAP_OWN_STATIC_RANDOM_ADDR2 0x33
#define CFG_GAP_OWN_STATIC_RANDOM_ADDR1 0x44
#define CFG_GAP_OWN_STATIC_RANDOM_ADDR0 0x55
*/

12. Scan Device Flow

The default scan parameter is using 1 Mbps PHY and passive scan (refer to

param_scan.h).

Scan device report filter policy is In CT_scan.c (scan_report_ind). See Figure 39.

Is legacy adv.

RSSI level

Is iBeacon

Beacon
Logger
Process

Check received rssi with app_env.config.rssi_filter

Compare with IBEACON_PATTERN

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 47

Figure 39 - Scan Device Report Filter Policy

12.1 Create iBeacon Advertiser

Clone Method:

Scan an iBeacon device in the scan list, clone it, modify UUID, then enable. See Figure

40.

Figure 40 - iBeacon Advertiser Clone Method

Create New Method:

Follow iBeacon payload format to create a new iBeacon advertiser, then enable. See

Figure 41.

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 48

Figure 41 - iBeacon Advertiser Create New Method

Note: 0x004C is a company ID defined in iBeacon payload format. In this example,

synchronizing the setting with FW source code for the filter policy is needed (refer to

CT_scan.c : IBEACON_PATTERN).

12.2 Beacon ID

This Application will NOT use BT ADDR to identify the peer device instead of Beacon

ID. Beacon ID is from the UUID field of iBeacon payload. It will take byte 0~5 of UUID

as Beacon.

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 49

12.3 Beacon Logger Process

In Beacon Logger Process, each received iBeacon will keep/update the data field

defined in device_info_t structure, see Figure 42 and Table 9.

All the data will be kept in the RAM and use linked lists (scan_list and record_list) to

manage the buffer usage. For each received iBeacon, the Application will search

through the linked list (scan_list) using Beacon ID.

If this is a new Beacon ID, the Application will create a new entry into scan_list.

If there is already a Beacon ID in scan_list and duration is longer than the proximity

interval, it will be removed from scan_list and inserted into records_list.

If there is already a Beacon ID in scan_list and record_list and duration is longer than

proximity interval, the proximity counter in records_list will be updated.

If there is already a Beacon ID in scan_list and duration is longer than nearby timeout,

it will be removed from scan_list and inserted into records_list.

Once the size of records_list is more than 4 Kbyte (a flash sector), it will be flushed to

flash. In this application, the oldest data in flash will be overwritten when it is full.

Please check bls_scan_report_ram_to_flash() in top_mmi.c for more detail about flash

record write operations See Figure 43 for the flows.

Figure 42 - device_info_t Structure for Scan

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 50

Table 9 - device_info_t Structure for Scan

Data Field Description

start_time First received time (unit: second)

rx_time Last received time (unit: second)

proxi_cnt Counter: Received the same Beacon ID in proximity internal.

max_rssi Maximum received RSSI value

beacon_type Is TAG_IBEACON or TAG_MY_BEACON

beacon_ID Beacon ID

Figure 43 - Beacon Logger Process

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 51

13. Bluetooth LE GATT Services

Generic Access and Generic Attribute service will be created by the SDK framework

automatically. Standard DIS and customized service will be added in top_mmi.c

(s_ble_init). See below:

 atm_gap_prf_reg(BLE_DISS, app_bass_param());

 CT_gatt_create_prf();

 atm_gap_prf_reg(BLE_ATMPRFS, NULL);

Table 10 - Bluetooth LE GATT Service UUID

Service Name UUID Note

Generic Access 0x1800

Generic Attribute 0x1801

Device Information 0x180A

Customized service -

Activation and Adv. Parameter Setting Service

a0a0a0a0... Refer to cfg_svc_uuid of CT_gatt.c

Customized service -

Beacon logger

b0b0b0b0... Refer to bls_svc_uuid of CT_gatt.c

See Figure 44 for Activation and Advertising Parameter Service.

 CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 52

Figure 44 - Activation and Advertising Parameter Service

See Figure 45 for Beacon Logger Service.

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 53

Figure 45 - Beacon Logger Service

13.1 Command handler

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 54

Below are two characteristics to handle attribute write requests, see Figure 46 and

Figure 47. The data buffer is 8 bytes defined in “APP_DATA_SIZE”.

mmi_cfg_sub_command() API will handle the write request from Mobile APP.

BLS Command Characteristic:

Figure 46 - BLS Command Characteristic

Cfg. Command Characteristic:

Figure 47 - Cfg. Command Characteristic

Use the “sub_cmd_payload” data structure to pack the command. See Figure 48.

Figure 48 - Common Command Payload Format

The command field is always “0x00” defined in “APP_TAG_CFG” and uses a sub_cmd

field to identify the command purpose. See Figure 49 and Table 11.

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 55

Figure 49 - Sub Command Value

CMD_TAG_CFG is for Cfg Command Characteristic and CMD_BLS_CFG,

CMD_UP_REF_TIME and CMD_RETRIEVE are for BLS Command Characteristic.

Table 11 - Sub Command Table

Sub Command Purpose CMD Raw Buffer Example

CMD_TAG_CFG Let Mobile APP to overwrite:

app_env.config.act_status

app_env.config.en_enc

app_env.config.adv_interval

app_env.config.tag_type

Refer to Table 8 - Tag ID 0xAB -

APP_CONFIG Flash NVDS Settings

66

0B 00 // advertising interval unit:

100ms

00 // beacon type

30 // enable activation and

encryption

00 00 // reserve

00 // sub-cmd - CMD_TAG_CFG

CMD_BLS_CFG Let Mobile APP to overwrite:

app_env.config.rssi_filter -

app_env.config.proximity_interval

app_env.config.scan_period

app_env.config.scan_duration

Refer to Table 8 - Tag ID 0xAB -

APP_CONFIG Flash NVDS Settings

66

98 // rssi filter

05 // proximity interval

0A // scan period

0A 00 // scan duration

00 // reserve

01 // sub-cmd - CMD_BLS_CFG

CMD_UP_REF_TIME Let Mobile APP to update system time 66

Xx xx xx xx // new system time

00 00 // reserve

02 // sub-cmd - CMD_UP_REF_TIME

CMD_RETRIEVE Let Mobile APP to retrieve beacon logger

recorded in flash sector

66

00 00 00 00 00 00 // reserve

03 // sub-cmd - CMD_RETRIEVE

The command raw buffer can be saved as a profile in nRF connect APP for testing. See

Figure 50.

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 56

Figure 50 - Command Profile

13.2 Software Real Time Clock

The Application will have one second timer and counter update into sec_cnt of

CT_scan.c.

When the device enters hibernation, the device will retain one second counter and

current system clock time. The Application will restore them after waking up from

hibernation. The Application can adjust the sec_cnt to compensate for the duration of

hibernation. Twelve hours (defined in INTERVAL_HIB_SEC) is the default value that

the device will wake up automatically in hibernation mode to update the one second

counter. Mobile APP can use GATT service (submit CMD_UP_REF_TIME) to update

absolute time to device, then the start_time of beacon logger will use this absolute time

base. See Figure 51.

Figure 51 - Software Real Time Clock

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 57

13.3 Retrieve Beacon Logger

Beacon logger data saved in the flash sector can be retrieved by Mobile APP. Mobile

APP needs to enable the notification property, then send CMD_RETRIEVE command.

See Figure 52.

Figure 52 - Enable Notification Property

13.4 MTU size

To have better performance, Mobile APP can perform MTU exchange before sending

CMD_RETRIEVE command. The MTU size is set to 259 defined in

CFG_GAP_MAX_LL_MTU (param_gap.h). The MTU size should be larger than the

buffer size used to send notification packets defined in SIZE_BLS_CAHR_RECORDS.

To increase SIZE_BLS_CAHR_RECORDS, please also increase

CFG_GAP_MAX_LL_MTU to gain better transmit performance. See Figure 53.

 Enable Notify

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 58

Figure 53 - Request MTU

13.5 Notify Packet Format to Report Beacon Logger

mmi_mv_flash_data_to_list() API will unpack beacon logger data from the flash

sector then pack into the notification packet. record_info structure is the format

reporting beacon logger to Mobile APP using GATT notification, see Figure 54. The

upper layer of example code will use 256 as buffer size defined in

SIZE_BLS_CAHR_RECORDS and concatenate each beacon information, then call

gatt_records_send() API to send notification packet.

Figure 54 is the notification packet buffer parser example:

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 59

Figure 54 - Notification Beacon Report

The raw data in the notification buffer is “C3 FA 58 00 11 11 00 00 00 00 0F 00 C9 00

27 D6 5B 00 11 11 00 00 00 00 0C 00 C8 00 77 6C 5E 00 11 11 00 00 00 00 0D 00 C7

00”.

The Mobile APP can base on “Beacon report format” (Figure 55) to parse. Table 12

shows the beacon report parameters.

Figure 55 - Beacon Report Format

Table 12 - Beacon Report Parameters

Received time Beacon ID Proximity Count Max. RSSI Tag Type

C3 FA 58 00 11 11 00 00 00 00 0F 00 C9 00

27 D6 5B 00 11 11 00 00 00 00 0C 00 C8 00

77 6C 5E 00 11 11 00 00 00 00 0D 00 C7 00

Mobile APP can use proximity counter and proximity interval to calculate how long the

user is nearby with Beacon ID owner.

14. Console Log for Beacon Record Dump

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 60

Refer to MMI event and behavior (event #3-2 and #3-3) to trigger the dump process.

There will be four "\n" characteristics at the front of the dump table, and two "\n"

characteristics at the end of the dump table.

14.1 Show Current Record List in RAM

Print out the record list per 30s until the user triggers the event #3-2 (short click) to stop

this periodic report. See Figure 56.

Figure 56 - Show Current Record List in RAM

14.2 Retrieve Flash Record Beacon List

1) Each 4 k flash sector can store ~150 beacon log entries.

2) For testing, the user can use the event #3-3 to trigger flushing record beacon

flash sectors (enter connectable advertising stage). After performing this flash

record dump, it will erase flash sectors that are used by beacon loggers.

3) proximity cnt: Indicates how long will stay near the proximity tag (unit is scan

period, in Figure 57 scan period is 10 seconds.)

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 61

Figure 57 - Retrieve Flash Record Beacon List

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 62

14.3 Leave and Return - Nearby Timeout Case

Beacon ID[9e:ef:48] leave and return after Nearby Timeout (2*scan period = 2*60 =

120 secs), which will create new record entry for Beacon ID[9e:ef:48]

Nearby timeout configuration: (in CT_scan.c)

#define NEARBY_TIME_MUL (2) //unit: scan period

See Figure 58.

Figure 58 - Leave and Return - Nearby Timeout Case

14.4 Leave and Return - Still In Nearby Timeout

Beacon ID[6f:f6:0e] leave and return quickly within nearby timeout. It will not create

new record entry. It’s proximity counter will be less than others. See Figure 59.

Figure 59 - Leave and Return - Still in Nearby Timeout Case

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 63

15. OTA

15.1 Enable Atmosic OTA Service

● Add OTAPS module into PROFILES of the makefile.

● Add ble_otps module into FRAMEWORK_MODULES of the makefile.

● PROFILES += DISS BASS OTAPS

● FRAMEWORK_MODULES += app_gap … ble_otaps

15.2 ATM2202 Flash Layout

The makefile will check if enabling “Atmosic OTA Service” then switch to use the flash

layout for OTA. See Figure 60.

Figure 60 - Flash Layout for OTA

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 64

15.3 Build Firmware for EVK

Build and download OTA-enabled firmware:

make run_all ERASE_UPGRADE_DATA=1 BOARD=m2202

CFG_GPIO_MMI_BTN_ACTIVE_LOW:=1

Note: Will have the following console message - “Erasing upgd sector …”

Build OTA Image for APP:

make clean

make build_flash_nvds

make build_archive BOARD=m2202 CFG_GPIO_MMI_BTN_ACTIVE_LOW:=1

Note: CFG_xxx environment variables depend on your hardware board

15.4 SW Virtual Record Pool for OTA

See Figure 61.

Figure 61 - SW Virtual Record Pool for OTA

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060 65

Revision History

Date Version Description

May 13, 2022 0.60 Updated for SDK 5.1.0 release.

April 14, 2021 0.54 Undated format, no content change.

March 29, 2021 0.53 Undated Quick Start section.

December 2, 2020 0.52 Corrected typos.

November 27, 2020 0.51 Corrected typos.

November 23, 2020 0.50 Initial version created.

CONFIDENTIAL

CONFIDENTIAL | Doc. No. ATM2_ATM3-UGCTE-0060

ATMOSIC TECHNOLOGIES – DISCLAIMER

This product document is intended to be a general informational aid and not a substitute for any
literature or labeling accompanying your purchase of the Atmosic product. Atmosic reserves the right to
amend its product literature at any time without notice and for any reason, including to improve product
design or function. While Atmosic strives to make its documents accurate and current, Atmosic makes
no warranty or representation that the information contained in this document is completely accurate,
and Atmosic hereby disclaims (i) any and all liability for any errors or inaccuracies contained in any
document or in any other product literature and any damages or lost profits resulting therefrom; (ii) any
and all liability and responsibility for any action you take or fail to take based on the information
contained in this document; and (iii) any and all implied warranties which may attach to this document,
including warranties of fitness for particular purpose, non-infringement and merchantability.
Consequently, you assume all risk in your use of this document, the Atmosic product, and in any action
you take or fail to take based upon the information in this document. Any statements in this document in
regard to the suitability of an Atmosic product for certain types of applications are based on Atmosic’s
general knowledge of typical requirements in generic applications and are not binding statements about
the suitability of Atmosic products for any particular application. It is your responsibility as the customer
to validate that a particular Atmosic product is suitable for use in a particular application. All content in
this document is proprietary, copyrighted, and owned or licensed by Atmosic, and any unauthorized use
of content or trademarks contained herein is strictly prohibited.

Copyright ©2020 - 2022 by Atmosic Technologies. All rights reserved. Atmosic logo is a registered
trademark of Atmosic Technologies Inc. All other trademarks are the properties of their respective
holders.

Atmosic Technologies | 2105 S. Bascom Ave. | Campbell CA, 95008
www.atmosic.com

CONFIDENTIAL

	User Guide
	Table of Contents
	List of Figures
	List of Tables
	1. Overview
	1.1 Quick Start

	2. Application States
	2.1 MMI events and behavior
	2.2 Sub states
	2.3 Compile options for initial state

	3. Software Modules
	3.1 Module description
	3.2 Module hierarchy

	4. Message Sequence Chart
	4.1 Power on, MMI on, and MMI off
	4.2 Bluetooth LE init. and start connectable pairing advertising (CAVD)
	4.3 Connectable pairing advertising (CADV) timeout
	4.4 Start beacon advertising activity
	4.5 Update iBeacon status field of adv. payload
	4.6 Connection indication
	4.7 Disconnection indication
	4.8 GAP Pairing

	5. Hardware Setup
	5.1 PIN Setup
	5.2 Configure flash layout
	5.3 Flash sector layout
	5.4 Interface board for console log

	6. Application defined flash NVDS
	6.1 Device unique parameters (Tag ID:0xAA)
	6.2 Configuration parameters (Tag ID: 0xAB)
	6.3 Apply the change
	6.4 Update device UUID of Advertisement payload

	7. Default Parameters
	7.1 Advertisements
	7.2 GAP Parameter
	7.2.1 Connection Parameter Negotiation
	7.2.2 Generic Access Device Name
	7.2.3 Generic Access Appearance
	7.2.4 Security Level

	7.3 Scan parameter

	8. Button
	9. Hibernation Management
	10. GATT Service Create/Read/Write
	10.1 Create GATT service
	10.2 Handle ATT Read
	10.3 Handle ATT Write

	11. Address Modes
	12. Scan Device Flow
	12.1 Create iBeacon Advertiser
	12.2 Beacon ID
	12.3 Beacon Logger Process

	13. Bluetooth LE GATT Services
	13.1 Command handler
	13.2 Software Real Time Clock
	13.3 Retrieve Beacon Logger
	13.4 MTU size
	13.5 Notify Packet Format to Report Beacon Logger

	14. Console Log for Beacon Record Dump
	14.1 Show Current Record List in RAM
	14.2 Retrieve Flash Record Beacon List
	14.3 Leave and Return - Nearby Timeout Case
	14.4 Leave and Return - Still In Nearby Timeout

	15. OTA
	15.1 Enable Atmosic OTA Service
	15.2 ATM2202 Flash Layout
	15.3 Build Firmware for EVK
	15.4 SW Virtual Record Pool for OTA

	Revision History

