

Atmosic Application

Development Guide

©2021, Atmosic Technologies Inc. All rights reserved. Atmosic logo is a registered trademark of Atmosic Technologies Inc. All other
trademarks are the properties of their respective holders. This preliminary document is subject to change without notice.

 CONFIDENTIAL 1 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

Atmosic Application Development Guide

Revision History

Date Version Description

March 30, 2021 0.50 Initial version created.

July 20, 2021 0.60 Updated various sections for SDK 4.1.0

September 29, 2021 0.70 Renamed this document and added 3 System Utilities and 4 Hardware
Drivers sections.

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 2 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

Table of Contents
1 Overview 5

1.1 Software Architecture 5

1.2 Application Framework 5

2 Bluetooth LE Application 10

2.1 Bluetooth LE Connection Flow 10

2.1.1 Atmosic GAP Modules 11

atm_gap_param Module 11

atm_gap Module 13

2.2 Profile Registration 15

2.3 Initialization 15

2.4 Device Discovery - Advertising 18

2.4.1 Atmosic Advertisement Modules 18

2.4.2 atm_adv_param Module 18

Get parameter from Flash NVDS 20

Get parameter from predefined structure 20

Using runtime modified parameter 21

2.4.3 atm_adv Module 22

2.5 Device Discovery -Scanning 25

2.5.1 Atmosic Scan Modules 25

2.5.2 atm_scan_param Module 25

Get parameter from Flash NVDS 26

Get parameter from predefined structure 26

Using runtime modified parameter 27

2.5.3 atm_scan Module 28

2.6 Connection Establishment 30

2.6.1 Atmosic Initiator Modules 30

2.6.2 atm_init_param Module 31

Get parameter from predefined structure 31

Using runtime modified parameter 32

2.6.3 atm_init Module 32

2.7 Connection Mechanism 35

2.7.1 Detailed LE Connection Flow 36

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 3 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

3 System Utilities 38

3.1 Application State Machine 38

3.2 Log Utility 38

3.2.1 ATM_LOG Macro 38

3.2.2 Debug Log Level 38

3.2.3 How to Use 39

3.3 Power Management 40

3.3.1 Power Saving Modes 40

3.3.2 Power Mode Lock 40

3.3.3 Power Manager API 41

3.3.4 atm_pm lock example 41

3.4 Software Timer 42

3.4.1 Software Timer API 42

3.4.2 sw_timer example 43

3.5 Software Event 43

3.5.1 Software Event API 43

3.5.2 sw_event example 44

3.6 AT Command 45

4 Hardware Drivers 46

4.1 GPIO Driver 46

4.1.1 atm_gpio Module 46

4.2 I2C Driver 48

4.2.1 i2c Module 48

4.3 SPI Driver 53

4.3.1 Pin Assignment for SPI 53

4.3.2 SPI Module 54

List of Figures
Figure 1 - Application Framework Architecture
Figure 2 - Application Framework Operation Flow
Figure 3 - API Profile Registration
Figure 4 - Initialization Process
Figure 5 - Advertisement Modules

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 4 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

Figure 6 - atm_adv_param Flow
Figure 7 - Get Parameter from Predefined Structure
Figure 8 - Using Runtime Modified Parameter
Figure 9 - atm_adv Flow
Figure 10 - Scan Module Usage Diagram
Figure 11 - atm_scan_param Module Diagram
Figure 12 - atm_scan_param Module Pre-defined Structure
Figure 13 - atm_scan_param Module Runtime Modified Parameter
Figure 14 - atm_scan Module Flow
Figure 15 - Initiator Modules
Figure 16 - Initiator Parameter Module
Figure 17 - atm_init Flow
Figure 18 - Connection Mechanism Sequence Overview
Figure 19 - Bluetooth LE Framework Initialization Sequence
Figure 20 - Atmosic Application Framework Connection Mechanism Sequence
Figure 21 - Power Mode Lock
Figure 22 - atm_gpio Module Flow
Figure 23 - i2c Module Flow
Figure 24 - Timing Diagram For SPI Mode 0 - Sample At Rising Edge

List of Tables
Table 1 - Modules, Files, Locations and Functions
Table 2 - atm_gap_param_t Atmosic GAP Parameters
Table 3 - Device Configurations
Table 4 - Frequently Used GAP API Functions
Table 5 - Frequently Used GAP Callbacks
Table 6 - Flash NVDS Parameters
Table 7 - API Parameters Description
Table 8 - Initiator Parameters API Description
Table 9 - Debug Log Level
Table 10 - Power Saving Modes
Table 11 - Power Manager API
Table 12 - Software Timer APIs
Table 13 - Software Event APIs
Table 14 - Atmosic GPIO API Description
Table 15 - Atmosic I2C API Description
Table 16 - Atmosic SPI API Description

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 5 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

1 Overview

1.1 Software Architecture
The software for Atmosic ATM2/ATM3 SoC includes 3 layers:

● Application
● Application framework
● Protocol stack and hardware registers

 Figure 1 shows ATM2/3 software architecture.

Figure 1 - ATM2/3 software architecture

The ATM2/ATM3 software is written in C using functions provided by the application framework.
Currently some basic projects, such as broadcaster and observer, and some reference design projects,
such as remote controller and Bluetooth LE UART bridge, are provided.

1.2 Application Framework
Atmosic Application Framework is a set of C library functions for application development. It was
designed and developed based on CEVA RivieraWaves Bluetooth Low Energy software protocol stack
and ATM2/ATM3 hardware registers.

The purpose of the application framework is to allow customers to develop their Bluetooth LE
applications and products based on Atmosic ATM2/ATM3 SoC more easily and quickly.

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 6 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

The application framework consists of application adapters (Bluetooth LE activities and profiles
managers), Atmosic profiles, stack binders, system utilities and hardware drivers. The stack binder
transforms the function calls from application adapters into the sending messages to CEVA stack or
the receiving messages from CEVA stack into the callback invokings to application adapters. The
application adapter provides high level APIs for applications to interact with the profiles. The driver
provides the functionality and configuration APIs to access ATM2/ATM3 hardware devices.

Table 1 lists all Atmosic application framework modules and their filenames and description.

Category Path Filename Description

Application

Adapter

lib/app_bass
app_bass.c

app_bass.h

Battery Service (BAS) server application

adapter

lib/app-diss
app_diss.c

app_diss.h

Device Information Service (DIS) server

application adapter

lib/app_gap
app_gap.c

app_gap.h

LE Generic Attribute Profile (GAP)

application adapter

lib/app_hrps
app_hrps.c

app_hrps.h

Heart Rate Profile (HRP) server

application adapter

lib/app_htpt
app_htpt.c

app_htpt.h

Heath Thermometer Profile (HTP) server

application adapter

lib/app_otaps
app_otaps.c

app_otaps.h

Atmosic firmware update Over-The-Air

Profile (OTAP) server application

adapter

lib/atm_gap

atm_gap.c

atm_gap_param.c

atm_gap_param.h

LE device and link manager

lib/atm_adv

atm_adv.c

atm_adv_param.c

atm_adv_param.h

LE advertising manager

lib/atm_scan

atm_scan.c

atm_scan_param.c

atm_scan_param.h

LE scanning manager

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 7 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

lib/atm_init

atm_init.c

atm_init_param.c

atm_init_param.h

LE Initiating manager

Atmosic

Profile

lib/prf_bridge
prf_bridge.c

prf_bridge.h

Atmosic bridge profile

(based on Atmosic profile server)

lib/atm_prfs

atm_prfs.c

atm_prfs.h

atm_prfs_task.c

atm_prfs_task.h

Atmosic profile server

Stack

Binder

lib/ble_task

ble_task.c

ble_task.h
BLE application task message handler

lib/ble_gap
ble_gap.c

ble_gap.h
GAP API

lib/ble_gap_sec
ble_gap_sec.c

ble_gap_sec.h
GAP security part API

lib/ble_bass
ble_bass.c

ble_bass.h
BAS server API

lib/ble_diss
ble_diss.c

ble_diss.h
DIS server API

lib/ble_hogpd
ble_hogpd.c

ble_hogpd.h
HOGPD API

lib/ble_atvvs
ble_atvvs.c

ble_atvvs.h

Android TV voice service (ATVVS, aka

Google Voice Service) server API

lib/ble_atmprfs
ble_atmprfs.c

ble_atmprfs.h
Atmosic profile server API

lib/ble_gattc
ble_gattc.c

ble_gattc.h

GATT message handler worked with

ROM profile stack

lib/ble_hrps
ble_hrps.c

ble_hrps.h
HRP server API

lib/ble_htpt ble_htpt.c HTP server API

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 8 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

ble_htpt.h

lib/ble_lecb
ble_lecb.c

ble_lecb.h
LE credit based connection procedures

lib/ble_module
ble_module.c

ble_module.h
Link time module

lib/ble_otaps
ble_otaps.c.c

ble_otaps.h
OTAP server API

System
Utilities

lib/atm_asm
atm_asm.c

atm_asm.h
Application state machine API

lib/atm_log atm_log.h Log utility

driver/atm_pm
atm_pm.c

atm_pm.h
Power management API

driver/sw_event
sw_event.c

sw_event.h
Software event API

driver/sw_timer
sw_timer.c

sw_timer.h
Software timer API

lib/at_cmd

at_cmd.c

at_cmd.h

at_cmd_pasr.c

at_cmd_pasr.h

at_cmd_sysreset.c

Atmosic AT command engine

lib/at_cmd_set

at_cmd_event.h

at_cmd_init.c

at_cmd_init.h

at_cmd_utils.c

at_cmd_utils.h

[at_cmd_handlers..]

AT command generic API and existing

command handlers

Hardware
Driver

driver/atm_ble
atm_ble.c

atm_ble.h
BLE stack API extension

driver/atm_button atm_button.c Button driver based on GPIO

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 9 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

atm_button.h

driver/atm_gpio
atm_gpio.c

atm_gpio.h
GPIO driver

driver/atm_vkey
atm_vkey.c

atm_vkey.h
Virtual key event model

driver/brwnout
brwnout.c

brwnout.h
Brownout support

driver/ext_flash
ext_flash.c

ext_flash.h
External flash driver

driver/gadc
gadc.c

gadc.h
ADC driver

driver/hib_storage
hib_storage.c

hib_storage.h
Hibernation storage driver

driver/i2c
i2c.c

i2c.h
I2C driver

driver/interrupt
interrupt.c

interrupt.h
Interrupt routing and handler

driver/ir

ir.c

ir.h

nec_ir.c

IR driver

driver/keyboard

keyboard.c

keyboard.h

keyboard_internal.h

keyboard_param.h

usb_hid_keys.h

Key scan matrix driver

driver/led_blink
led_blink.c

led_blink.h
LED driver

driver/pdm

adpcm_enc.c

adpcm_enc.h

pdm_intp_data.h

pdm_intp.c

PDM driver and ADPCM encoder

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 10 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

pdm_intp.h

pdm.c

pdm.h

driver/pmu
pmu.c

pmu.h
Energy harvesting management API

driver/spi

qspi.h

spi_flash.c

spi_flash.h

spi.c

spi.h

SPI/QSPI driver

driver/uart_flash uart_flash.c UART flash driver

driver/uart0_raw
uart0_raw.c

uart0_raw.h
UART driver

driver/wurx
wurx.c

wurx.h
Wakeup receiver driver

Table 1 - Atmosic application framework module list

2 Bluetooth LE Application

2.1 Bluetooth LE Connection Flow
Figure 2 depicts the overview of the connection flow to establish a Bluetooth LE connection via
Atmosic application framework:

● Profile Registration
● Initialization
● Device discovery

○ Advertising
○ Scanning

● Connection establishment
● Connection mechanism
● Connection detachment

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 11 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

Figure 2 - Overview of the Atmosic Application Framework Connection Flow

2.1.1 Atmosic GAP Modules
Atmosic GAP modules are the basic modules of Atmosic Application Framework and required for all
BLE applications. With atm_gap_param and atm_gap modules, applications could use their API to
complete the BLE stack initialization and GAP messages exchange.

atm_gap_param Module

The atm_gap_param module provides an API to get a set of default parameters for GAP initialization
and the header file atm_gap_param_internal defines the default values of GAP configurations in case
these configurations are not overwritten in applications. atm_gap_param_t is the structure of GAP
configuration. All parameters in atm_gap_param_t are shown in Table 2.

Member Description

uint8_t* dev_name

dev_name is a pointer to a string array. This string will be
the Device Name (0x2A00) characteristic value of GAP
services . If NVDS tag 0x02 exists, the dev_name will be
replaced.

uint8_t dev_name_len Length of device name

uint8_t dev_name_max Size of the device name array

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 12 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

uint16_t appearance Appearance (0x2A01) characteristic value of GAP services.

struct gap_slv_pref
slv_pref_params

Peripheral(Slave) preferred connection parameters
(0x2A04) characteristic values of GAP services. This
configuration includes connection interval minimum,
connection interval maximum, slave latency and connection
timeout parameters.

uint8_t*
fix_irk

Force irk from the application for special usage. Null if not
used.

struct gapm_set_dev_config_cmd
dev_config

See Table 3

bd_addr_t addr Bluetooth device address

Table 2 - atm_gap_param_t Atmosic GAP parameters

dev_config is the most important configuration in atm_gap_param_t for the initialization procedure
to decide the device role, privacy, security and data exchange features. All configurations in dev_config
are shown in Table 3.

Member Descriptions

Generic Configuration

uint8_t role Bluetooth LE device role. It would be central, peripheral, observer,
broadcaster or all roles.

Privacy Configuration

uint16_t renew_dur Address renew duration when controller privacy is enabled. Unit is
second.

bd_addr_t addr Device static private random address. If the NVDS tag 0x01 exists,
it will be replaced.

struct gap_sec_key irk Device IRK used for resolvable random BD address generation (LSB
first).

uint8_t privacy_cfg Privacy configuration. It is used to enable controller privacy.

Security Configuration

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 13 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

pairing_mode pairing mode is used to enable pairing feature, legacy or SC.

LE Data Length Extension Configuration

sugg_max_tx_octets The Controller's maximum transmitted number of payload octets
to be use

sugg_max_tx_time The Controller's maximum packet transmission time to be used.

L2CAP Configuration

max_mtu Maximum MTU acceptable for the device.

Table 3 - Device Configurations

atm_gap Module

The atm_gap module provides the required APIs to configure the device and initialize the BLE stack
with variant configurations according to the application requirements. During the connection
mechanism process, it provides APIs to accept the connection request, negotiate the connection
parameters and detach the existing links .These API functions are shown in Table 4.

Function Descriptions

Initialization

atm_gap_prf_reg(char const *name, void
const *parm)

Register profile with profile name and
parameters.

atm_gap_start(atm_gap_param_t *init,
atm_gap_cbs_t const *cbs)

Initialize BLE stack with init parameters and
callbacks

Connection

atm_gap_connect_accept(uint8_t conidx) Accept connection request by connection index

atm_gap_connect_param_nego(uint8_t
conidx, atm_gap_param_nego_t const *param)

Launch process of requesting new connection
parameter

atm_gap_print_conn_param(atm_connect_inf
o_t *info)

Print connection parameter

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 14 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

atm_gap_disconnect(uint8_t conidx, uint8_t
reason)

Disconnect connection with reason by
connection index

Table 4 - Frequently Used GAP API Functions

The atm_gap also provides a set of callback functions, atm_gap_cbs_t to handle the GAP messages
from the BLE stack in the applications. The frequently used callback functions are shown in Table 5.

Callback Descriptions

Initialization

p_init_cfm Confirmation of finish of atm_gap_start.

p_quick_start_op Quick start operation. Called after bt reset but before
atm_gap_start finished.

Scan

p_ext_adv_ind Indicate reception of advertising, scan response or periodic
advertising data.

Connection

p_conn_ind Indicate that a connection has been established.

p_disc_ind Indicate that a link has been disconnected

p_conn_param_updated_ind Indication that connection parameters have been updated.

Pairing

p_pair_req_ind Indicate received pairing request from master.

p_sec_req_ind Indicate received a security request from the slave.

p_pair_passkey_ind Indication of passkey display or passkey input.

p_pair_numeric_ind Indication of numeric comparison reception.

p_pair_ind Indication of pairing result.

Table 5 - Frequently Used GAP Callbacks

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 15 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

2.2 Profile Registration
Profile registration phase is about registering profile API into the atm_gap module. After the profile is
registered, the events of the registered profile could be received through its callback functions.
Application calls atm_gap_prf_reg function with profile name and configuration parameters, as shown
in Figure 3.

Figure 3 - Profile Registration

2.3 Initialization
After profile registration, the application calls the atm_gap_start with gap parameter and application
callbacks. Once initialization is done, the callback p_init_cfm which is provided in atm_gap_start
argument would be invoked to notify the application, as shown in Figure 4. Refer to the 2.7.1 Detailed
LE Connection Flow section for details of this initialization sequence.

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 16 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

Figure 4 - Initialization Process

The following example shows how to configure the atm_gap_param_t and atm_gap_cbs_t in codes
and call atm_gap_start for initialization in an application.

struct gapm_set_dev_config_cmd default_dev_conf = {
 .role = CFG_GAP_ROLE,
 .pairing_mode = CFG_GAP_PAIRING_MODE,
 .sugg_max_tx_octets = CFG_GAP_MAX_TX_OCTETS,
 .sugg_max_tx_time = CFG_GAP_MAX_TX_TIME,
 .max_mtu = CFG_GAP_MAX_LL_MTU,
 .att_cfg = CFG_GAP_ATT_CFG};

atm_gap_param_t gap_param= {
 .dev_name = dname,

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 17 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

 .dev_name_max = CFG_GAP_DNAME_MAX_LEN,
 .fix_irk = CFG_GAP_FIX_IRK,
 .appearance = CFG_GAP_APPEARANCE,
 .slv_pref_params = {
 .con_intv_min = CFG_GAP_CONN_INT_MIN,
 .con_intv_max = CFG_GAP_CONN_INT_MIN,
 .slave_latency = CFG_GAP_SLAVE_LATENCY,
 .conn_timeout = CFG_GAP_CONN_TIMEOUT,
 },
 .dev_config = (struct gapm_set_dev_config_cmd*)&default_dev_conf,
 };

const static atm_gap_cbs_t cb = {
 .p_conn_ind = _cb_conn_ind,
 .p_disc_ind = _cb_disc_ind,
 .p_pair_req_ind = _cb_pair_req_ind,
 .p_pair_passkey_ind = _cb_pair_passkey_ind,
 .p_pair_numeric_ind = _cb_pair_numeric_ind,
 .p_pair_ind = _cb_pair_ind,
 .p_conn_param_updated_ind = _cb_gap_conn_param_updated_ind,
 .p_init_cfm = _cb_gap_init_cfm,
 .p_quick_start_op = _cb_gap_quick_start_op,
};

...

static void _cb_gap_init_cfm(uint8_t status)
{
 if (status == GAP_ERR_NO_ERROR) {
 //Success
 } else {
 //Error
 }
}

static rep_vec_err_t _init(void)
{
 ...
 atm_gap_start(&gap_param, &cb);
 return (RV_DONE);
}

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 18 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

2.4 Device Discovery - Advertising
In the device discovery process, the device could enter the advertising or scanning state to make it
able to be found by the other devices or to scan other nearby devices.
The Atmosic application framework provides advertise modules to manage the most common
Bluetooth LE advertising behavior and provide the flexible APIs to let developers adapt the Bluetooth
LE advertising modes through these modules easily.

2.4.1 Atmosic Advertisement Modules
The atm_adv_param and atm_adv are the modules used by the Atmosic application framework. The
atm_adv_param module exports the API to prepare the advertisement parameter for the atm_adv
API. The advertising parameter can come from Flash NVDS or predefined structure that can be
overridden by using the define preprocessor. The parameters of advertisement are able to be changed
and re-configured on the fly in application. See Figure 5.

Figure 5 - Advertisement Modules

2.4.2 atm_adv_param Module
There are four advertisement parameters to create advertisements. The atm_adv_param module
exports the APIs to retrieve the parameters from Flash NVDS or predefined structure.

Table 6 shows the parameters located in Flash NVDS.

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 19 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

API Name Parameter
Purpose

Description Parameters
NVDS tag ID

atm_adv_create_param_nvds Create parameter Advertisement type
Discovery mode
Tx power
RF channel configuration...etc

0x06

atm_adv_advdata_param_nvds Adv. payload
parameter

Advertisement payload 0x0B

atm_adv_scandata_param_nvds Scan response
payload
parameter

Scan response payload 0x0C

atm_adv_start_param_nvds Start parameter Advertisement duration
Advertisement event counter

0x05

Table 6 - Flash NVDS Parameters

Table 7 shows the parameters located in predefined structure. Atmosic framework provides
CFG_GAP_ADV_MAX_INST(2) instance number by default. Users can use makefile to overwrite the
default instance number. The application code can use the instance number as input parameter when
calling atm_adv_xxx_param_get API.

API Name Parameter
Purpose

Description Parameters Location

atm_adv_create_param_get Create parameter Configure:
 advertisement type
 discovery mode
 tx power
 channel configuration...etc

default_adv_create_param
 of atm_adv_param.c

atm_adv_advdata_param_get Adv. payload
parameter

Configure advertisement payload default_set_adv_data
of atm_adv_param.c

atm_adv_scandata_param_get Scan response
payload
parameter

Configure scan response payload default_set_adv_data
of atm_adv_param.c

atm_adv_start_param_get Start parameter Configure:
 advertisement duration
 advertisement event
counter

default_adv_start_param
 of atm_adv_param.c

Table 7 - API Parameters Description

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 20 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

Get parameter from Flash NVDS

Flash NVDS has defined four tag identities for the parameter used by advertisement. The application
code can use the makefile and toolchain to build the flash NVDS data then burn into an Atmosic chip.
The application code can use atm_adv_xxx_parameter_nvds to retrieve those settings before using
atm_adv module to create the advertisement.

Figure 6 - atm_adv_param Flow

Get parameter from predefined structure

The predefined advertisement parameter instance is in the atm_adv_param module and also provides
many overwrite fields to let the application code change the default value of predefined parameter
instance. The parameters that can be overwritten are listed in atm_adv_param_internal.h. The
application can apply the specific header file (-DGAP_PARM_NAME=”xxx.h” in makefile) to overwrite
the parameter setting. See Figure 7.

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 21 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

Figure 7 - Get Parameter from Predefined Structure

Using runtime modified parameter

The default data type is constant in the predefined advertisement parameter instance. If the
application code will need to change the parameter in some cases in runtime. The application code
needs to remove the constant data type using “-DCFG_ADV_xxx_PARAM_CONST=0”. See Figure 8.

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 22 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

Figure 8 - Using Runtime Modified Parameter

2.4.3 atm_adv Module
After preparing the advertisement parameter datas via atm_adv_param module. The application will
need to use the atm_adv module to control the advertisement. The application needs to provide the

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 23 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

callback function that works with the atm_adv module. The atm_adv_reg is the first function call that
provides the callback function. The atm_adv module will provide the event, activity index and status
information for each atm_adv exported API. The application code uses atm_adv_create API to create
advertisement activity. The callback function will receive the ATM_ADV_CTEATED event that includes
the activity index. After getting the activity index value, the application code can use it as the input
parameter for atm_adv exported API to control the advertisement. The application code can use
atm_adv_create API to create multiple advertisement sets and uses the activity index to control
specific advertisement sets.

The atm_adv_stop API will stop the advertisement transmission and the activity index is still valid for
the atm_adv module. The application code will use atm_adv_start to re-enable the advertisement
transmission again and doesn’t need to call atm_adv_create and atm_adv_set_xxx_data again. The
atm_adv module will destroy the activity instance when calling atm_adv_delete API. After this, the
activity index will become invalid index for the atm_adv module.

Depending on advertising type, the advertisement and scan response payload will be used or not. The
atm_adv_set_data_sanity API will perform sanity check before calling atm_adv_start API. See Figure
9 for the atm_adv flow.

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 24 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

Figure 9 - atm_adv Flow

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 25 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

2.5 Device Discovery -Scanning
The Atmosic application framework provides scan modules to manage the Bluetooth LE scanning
behaviors and provide the associated callback function to handle the scanning results.

2.5.1 Atmosic Scan Modules
The atm_scan_param and atm_scan are the modules used by the Atmosic application framework. The
atm_scan_param module exports the API to prepare the scan parameter for the atm_scan API. The
scanning parameter could be loaded from Flash NVDS or a predefined instance that can be overridden
by makefile with some particular preprocessor MACROs. These parameters can also be changed and
re-configured by application during runtime.

Figure 10 - Scan Module Usage Diagram

2.5.2 atm_scan_param Module
The overall behavior of the scanning activity is described by an aggregated parameter named

atm_scan_params_t. This parameter includes both HW and SW settings such as scanning interval or

the filtering policy for duplicated advertising packets. Since the SDK users would choose to use similar

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 26 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

settings for most of their applications. The NVDS or predefined structure provides great reusability and

flexibility for the SDK user to utilize.

Get parameter from Flash NVDS

Flash NVDS has defined one tag identity for the parameter used by scan activity. The application code
can use the makefile and toolchain to build the flash NVDS data then burn into an Atmosic chip. The
application code can use atm_get_nvds_scan_params to retrieve the setting before using the
atm_scan module to create the scan activity.

Figure 11 - atm_scan_param Module Diagram

Get parameter from predefined structure

The Atmosic framework provides CFG_GAP_SCAN_MAX_INST instances of a predefined scan
parameter in the atm_scan_param module by default. Users can modify the number of instances in
makefile and predefine the initial value of these instances for different scenarios as needed. The
predefined scan parameter instance in the atm_scan_param module is initialized by several
overwritable preprocessor macros. The SDK users may change these values by defining desired values
in each application’s makefile. The overwritable parameters are listed in atm_scan_param_internal.h.
In addition to defining new values of those overwritable fields, the SDK users can also specify another
header file in makefile (-DGAP_SCAN_PARM_NAME=”xxx.h”) to overwrite the entire setting for the
parameter.

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 27 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

Figure 12 - atm_scan_param Module Pre-defined Structure

Using runtime modified parameter

In most scenarios the predefined parameters are loaded and directly sent into another API to start

scanning activities without modifications. Thus the default data type is constant for the predefined

scanning parameters. If the application code would need to change partial values of the parameter

during runtime, the constant data type should be removed by adding “-

DCFG_SCAN_PARAM_CONST=0” in the makefile of that application. CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 28 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

Figure 13 - atm_scan_param Module Runtime Modified Parameter

2.5.3 atm_scan Module

After preparing the scanning parameter with the methods introduced previously, the application can
now utilize the atm_scan module to perform the scanning activity. The application needs to provide
an extra callback function to handle the scanned advertising report in the function sets provided to the
atm_gap module. Then the application code uses either atm_scan_create_and_start API to start
scanning activity immediately or atm_scan_create to create scanning instance first then calls
atm_scan_start to start scanning activity later. These two alternatives both expect the application
code to provide a callback function set to handle the index of the scanning activity as well as the status
change. Once the scanning activity is started successfully, the framework will start to send advertising
reports to the gap callback function if there are BLE devices nearby.

If the duration of the scanning parameter is not zero, the scanning activity would stop automatically
as specified. Otherwise the scanning activity would last permanently until the application code calls
the atm_scan_stop API. The activity index is still valid for the atm_scan module even after the
scanning activity is stopped. The application code could restart scanning by calling atm_scan_start
again with the same activity index provided.

Once the scanning activity is not needed anymore, the application code should call atm_scan_delete
API to destroy the scanning activity instance and release related resources in the Atmosic framework.
The activity index will also become invalid thus the application code should clear the index cached
locally.

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 29 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 30 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

Figure 14 - atm_scan Module Flow

2.6 Connection Establishment
The Atmosic application framework provides an initiator module to manage the Bluetooth LE initiating
behaviors and provide the associated callback functions to handle the related events.For the
controller, only one initiating procedure can be run. In the other word, it can not be allowed to
establish two connections at the same time. In addition, it is needed to support the central role. Please
check the role of gap with GAP_ROLE_CENTRAL.

2.6.1 Atmosic Initiator Modules
The atm_init_param and atm_init are the modules used by Atmosic application framework. The
atm_init_param module exports the API to prepare the initiator parameter for the atm_init API. The
initiator parameter can come from Flash NVDS or predefined structure that can be overridden by using
the define preprocessor. The parameters of the initiator are able to be changed and re-configured on
the fly in application.

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 31 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

Figure 15 - Initiator Modules

2.6.2 atm_init_param Module
There is one kind of parameter to start the initiator. The atm_init_param module exports the APIs to
retrieve the parameters from the predefined structure. See Table 8.

API Name Parameter
Purpose

Description Parameters Location

atm_init_param_get Start parameter Configure:
 type
 properties
 connection timeout
 connection interval
 slave latency...etc

default_init_param of
atm_init_param.c

Table 8 - Initiator Parameters API Description

Get parameter from predefined structure

The predefined initiator parameter instance is in atm_init_param module and also provides many
overwrite fields to let the application code change the default value of the predefined parameter
instance. The parameters that can be overwritten are listed into atm_init_param_internal.h. The
application can apply the specific header file (-DGAP_INIT_PARM_NAME=”xxx.h” in makefile) to
overwrite the parameter setting.

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 32 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

Using runtime modified parameter

The default data type is not constant in the predefined initiator parameter instance
(CFG_INIT_PARAM_CONST is set to zero), so the application code can change the parameter in
runtime.

Figure 16 - Initiator Parameter Module

2.6.3 atm_init Module
After preparing the initiator parameter datas via atm_init_param module. The application will need
to use atm_init module to control the initiator. For initiator, please set CFG_GAP_SCAN_MAX_INST
value .The application needs to provide the callback function that works with atm_init module. The
atm_init_reg is the first function call that provides the callback function. The atm_init module will
provide the state, activity index and status information for each atm_init exported API.

The application code uses atm_init_create API to create initiator activity. The callback function will
receive the ATM_INIT_CREATED state that includes the activity index. After getting the activity index

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 33 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

value, the application code can use it as the input parameter for atm_init exported API to control the
initiator.

For establishing connections, the application layer can call the atm_init_start API and input the related
parameter from atm_init_param modified the related parameters, ex: peer address for connecting
device. The most important is that only one initiator can be executed. Don’t execute two initiators at
the same time. If receiving ATM_INIT_STARTING_FAIL state, the initiator would not start. If connected,
the state would change to ATM_INIT_OFF. The activity index is still valid for atm_init module until
invoking the atm_init_delete API.

The atm_init_stop API will stop the initiator and the activity index is still valid for atm_init module.
The application code will use atm_init_start with the activity index to establish a new connection
again and doesn’t need to call atm_init_create again.

The atm_init module will destroy the activity instance when calling atm_init_delete API. After this, the
activity index will become invalid index for the atm_init module.

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 34 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

Figure 17 - atm_init Flow

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 35 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

2.7 Connection Mechanism
In connection mechanism process, the applications could use atm_gap API functions and callbacks to
handle the GAP messages from CEVA BLE stack. When a connection request indication event is
received in atm_gap and the conn_ind callback is invoked in the application, the callback handler may
call atm_gap_connect_accept to accept this connection request and keep handling the further
indications with atm_gap API functions and callbacks.

Figure 18 - Connection Mechanism Sequence Overview

 CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 36 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

2.7.1 Detailed LE Connection Flow
Initialization sequence of the Bluetooth LE framework is shown in Figure 19. Atmosic Application
Framework Connection Mechanism Sequence is shown in Figure 20.

Figure 19 - Atmosic Application Framework Initialization Sequence

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 37 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

Figure 20 - Atmosic Application Framework Connection Mechanism Sequence

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 38 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

3 System Utilities

3.1 Application State Machine
Please see Application State Machine Application Note.

3.2 Log Utility
Application framework provides a log utility atm_log to manage and configure debug messages by
each module (c source file).

3.2.1 ATM_LOG Macro
To use the atm_log utility, please include “atm_log.h” and call ATM_LOG_LOCAL_SETTING macro to
configure the debug level and module name in each source file and then use ATM_LOG macro to
print the different level debug messages.

● ATM_LOG_LOCAL_SETTING(name, level)
● ATM_LOG(level, dbg_msg, ...)

ATM_LOG debug message format:

@{timestamp} [{name}][{level}]: {dbg_msg}

3.2.2 Debug Log Level
Table 9 lists all debug log level masks which are used in the ATM_LOG macros.
Users could use -DATMLOG_GLOBAL_LEVEL={debug_level_mask} to configure the debug level of the
whole application.

Debug Level Mask Log Type Description

V Verbose log When this debug level mask is set in the local setting, all log types will be
output in the module.

D Debug log When this debug level mask is set in the local setting, the Debug, Notify,
Warning and Error log types will be output in the module.

N Notify log When this debug level mask is set in the local setting, the Notify, Warning
and Error log types will be output in the module.

W Warning log When this debug level mask is set in the local setting, the Warning and Error
log types will be output in the module.

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 39 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

E Error log When this debug level mask is set in the local setting, only the Error log type
will be output in the module.

Table 9 - Debug Log Level

Note: The length of the name display is up to 10. The oversized characters will be truncated.

3.2.3 How to Use

The following is an ATM_LOG macros use example:

C source file

#include "atm_log.h"

ATM_LOG_LOCAL_SETTING("modulename", D);

static void module_test(void)

{

 ATM_LOG(D, "enter %s", __func__);

 ATM_LOG(W, "exit %s", __func__);

}

The debug messages would be printed as below in the serial terminal software which supports ANSI
escape code.

@0016f0e0 [modulename][D]: enter module_test

@0016f186 [modulename][W]: exit module_test

For the users who just need a simple debug function with timestamp only and ignore the debug level
setting, please use the marco below:

DEBUG_TRACE(dbg_msg, ...)

Debug trace message format:

@{timestamp} {dbg_msg}

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 40 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

3.3 Power Management
Application framework provides a power manager module atm_pm to help users to manage the
power mode of the device.

3.3.1 Power Saving Modes
ATM2/3 devices support 3 types of power saving mode as shown in Table 10:

Power Saving Mode Description

Sleep Mode All variables and registers would be kept. The power consumption is the
highest in 3 power saving modes.

Retention Mode Drop to retention voltage, retain the required system blocks only. The power
consumption is in the middle of 3 power saving modes.

Hibernation Mode Only specific registers would be kept. The power consumption is the lowest
and close to SoC OFF mode. It looks like a reboot when the system wakes up
from hibernation mode.

Table 10 - Power Saving Modes

3.3.2 Power Mode Lock
ATM2/3 devices will always try to enter the lowest power consumption mode when the system is
idle. However, there are some activities that might still be on-going or wait for the response. To
prevent the system unexpectedly going to power saving mode during the activities, atm_pm uses the
locks for different power saving modes to control the system behavior. Figure 21 illustrates the
power mode control with the atm_pm locks.

Figure 21 - Power Mode Lock

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 41 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

3.3.3 Power Manager API
 Table 11 lists all power manager APIs.

Power Manager API Description

pm_lock_id_t atm_pm_alloc(pm_lock_type_e type) Allocate lock identifier with lock type

bool atm_pm_realloc(pm_lock_id_t id, pm_lock_type_e type) Allocate lock identifier with specified id and type

void atm_pm_free(pm_lock_id_t id) Free allocated lock

void atm_pm_lock(pm_lock_id_t index) Lock specific power mode

void atm_pm_unlock(pm_lock_id_t index) Unlock specific power mode

void atm_pm_lock_info(void) Print all locks status

void atm_pm_set_hib_restart_time(uint32_t restart_time) Set restart time from hibernate

void atm_pm_set_hibernate_cb
(rep_vec_fn__ret_bool__int32_t__uint32_t__t cb)

Set function of atm_pm replacement vector of
hibernate

Table 11 - Power Manager API

3.3.4 atm_pm lock example
The following is a simple atm_pm lock example:

makefile

DRIVERS := interrupt timer atm_pm sw_timer sw_event

C source file

#include "atm_pm.h"

static pm_lock_id_t lock_hiber;

static void user_init(void)

{

 ...

 lock_hiber = atm_pm_alloc(PM_LOCK_HIBERNATE);

 atm_pm_lock(lock_hiber);

 ATM_LOG(D, "Hibernation is locked.");

 // Prevent the system entering hibernation.

 ...

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 42 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

}

static void activity_stop(void)

{

 atm_pm_unlock(lock_hiber);

 ATM_LOG(D, "Hibernation is unlocked.");

 // System goes into hibernation.

}

Please refer to pm_demo example in the SDK for more atm_pm use examples.

3.4 Software Timer
Application framework provides software timer functionality through sw_timer module. Users can
use sw_timer API to alloc, set and clear timers for their application.

3.4.1 Software Timer API
Table 12 lists all sw_timer APIs.

Software Timer API Description

sw_timer_id_t sw_timer_alloc
(sw_timer_func_t handler, const void *ctx)

Allocate and configure timer

void sw_timer_free(sw_timer_id_t timer_id) Free allocated timer

void sw_timer_reconfig
(sw_timer_id_t timer_id, sw_timer_func_t handler, const void
*ctx)

Reconfigure timer handler and context

void sw_timer_set(sw_timer_id_t timer_id, uint32_t centisec) Start one-shot timer running

void sw_timer_clear(sw_timer_id_t timer_id) Stop/abort running timer

bool sw_timer_active(sw_timer_id_t timer_id) Get timer status

Table 12 - Software Timer APIs

The time unit of sw_timer_set is cent-second (10 ms). A "SW_TIMER_ID_MAX too big for
sw_timer_id_t" assertion might occur when the users try to allocate more than 8 software timers. By
default, the number of software timers is limited to 8 by SW_TIMER_ID_MAX. Users could change
the value in makefile with -DSW_TIMER_ID_MAX=N to enlarge the maximum number of software
timers based on their application needs.

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 43 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

3.4.2 sw_timer example
The following is a simple sw_timer example:

makefile

DRIVERS := interrupt timer atm_pm sw_timer sw_event

C source file

#include "sw_timer.h"

static sw_timer_id_t tid_test;

static bool repeat;

static void timeout_handler(sw_timer_id_t tid, void const *ctx)

{

 ATM_LOG(D, "Timer expired.");

 if (repeat) {

 sw_timer_set(tid_test, 5 * SW_TIMER_1_SEC);

 }

}

static void user_init(void)

{

 ...

 tid_test = sw_timer_alloc(timeout_handler, NULL);

 sw_timer_set(tid_test, 5 * SW_TIMER_1_SEC);

 ATM_LOG(D, "Timer started.");

 ...

}

3.5 Software Event
Application framework provides software event functionality through sw_event module. Users could
use sw_event APIs to allocate, set and clear software events for their application.

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 44 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

3.5.1 Software Event API
Table 13 lists all sw_event APIs.

Software Event API Description

sw_event_id_t sw_event_alloc
(sw_event_func_t handler, const void *ctx)

Allocate and configure event

void sw_event_free(sw_event_id_t event_id) Free allocated event

void sw_event_reconfig
(sw_event_id_t event_id, sw_event_func_t handler, const void *ctx)

Reconfigure event handler and context

void sw_event_set(sw_event_id_t event_id) Trigger event

void sw_event_clear(sw_event_id_t event_id) Clear event

bool sw_event_get(sw_event_id_t event_id) Get event status

Table 13 - Software Event APIs

A "SW_EVENT_ID_MAX too big for sw_event_mask" assertion might occur when the users try to
allocate more than 8 software events. By default, the number of software events is limited to 8 by
SW_EVENT_ID_MAX. Users could change the value in makefile with -DSW_EVENT_ID_MAX=N to
enlarge the maximum number of software events based on their application needs.

3.5.2 sw_event example
The following is a simple sw_event example:

makefile

DRIVERS := interrupt timer atm_pm sw_timer sw_event

C source file

#include "sw_event.h"

static sw_event_id_t eid_test;

static void event_handler(sw_event_id_t eid, void const *ctx)

{

 bool done = false;

 ATM_LOG(D, "Handling the event...");

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 45 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

 ...

 if (done) {

 sw_event_clear(eid);

 ATM_LOG(D, "Done. Clear the event.");

 }

 ...

}

static void user_init(void)

{

 ...

 eid_test = sw_event_alloc(event_handler, NULL);

 ...

}

static void trigger_event(void)

{

 sw_event_set(eid_test);

 ATM_LOG(D, "Event triggered.");

}

3.6 AT Command
Please see the Atmosic AT Command Application Note (available on the Atmosic support website).

CONFIDENTIAL

https://atmosic.com/login/

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 46 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

4 Hardware Drivers

4.1 GPIO Driver
The Atmosic application framework provides atm_gpio modules to provide the associated API function
to control the pins for GPIOs application.

4.1.1 atm_gpio Module
To enable the atm_gpio module, please add the module to DRIVERS in makefile.

DRIVERS := \
 atm_ble \
 atm_button \
 atm_gpio \
 atm_pm \

As initializing the atm_gpio module, the atm_gpio_init_constructor would be executed and valid io
would be marked according to the chip type to avoid setting invalid io.

For GPIO applications, the applications could use atm_gpio API functions to control or get the output
and input status. For input pin application, it also can support the interrupt handling. The related
setting flow and APIs are listed as below:

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 47 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

Figure 22 - atm_gpio Module Flow

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 48 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

The atm_gpio module exports the APIs to set pins as GPIOs and control/retrieve the status of GPIOs.
See Table 14.

API Name Purpose Parameter Description

void atm_gpio_setup(uint8_t gpio) Set pin as GPIO gpio: The number of GPIO not pin.
EX: For P20, the related GPIO is 16.
atm_gpio_setup(16);

The related mapping please refer to section 2.7 Pin
Multiplexing in ATM3_ATM2 Reference Manual.

void atm_gpio_set_input(uint8_t gpio)/
void atm_gpio_clear_input(uint8_t gpio)

Set/Clear gpio as
input io

gpio: The number of GPIO

void atm_gpio_set_output(uint8_t gpio)/
void atm_gpio_clear_output(uint8_t gpio)

Set/Clear gpio as
output io

gpio: The number of GPIO

void atm_gpio_set_pullup(uint8_t gpio)/
void atm_gpio_clear_pullup(uint8_t gpio)

Set/Clear gpio with
pullup

gpio: The number of GPIO

void atm_gpio_write(uint8_t gpio, bool value) Set output high or low
for output io

gpio: The number of GPIO
value: 0-low 1:high

bool atm_gpio_read_gpio(uint8_t gpio) Read the status for
GPIO

gpio: The number of GPIO
return: the status of the GPIO

bool atm_gpio_toggle(uint8_t gpio) Toggle the output gpio: The number of GPIO
return: the status of the GPIO after toggle

Table 14 - Atmosic GPIO API Description

4.2 I2C Driver
There are two identical I2C master ports, and it supports clock frequencies between 3.9kHz~4MHz.
The Atmosic application framework provides i2c modules with the associated APIs for i2c
communication.

4.2.1 i2c Module
To enable the atm_gpio module, please add the module to DRIVERS in makefile.

DRIVERS := \
 atm_ble \
 atm_button \

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 49 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

 i2c \

Figure 23 - i2c Module Flow

When initializing the i2c module, the i2c_init_constructor would be executed to register related
callback function to control the related pin as enter/exit retention or hibernation mode.

The input i2c_dev_t for the I2C APIs can be configured according to the I2C set and default status of
the data pin. The CMSDK_AT_APB_I2C_TypeDef can be selected to CMSDK_I2C0 or CMSDK_I2C1.
enable_data_pullup is used to set the default status of the data pin.

typedef struct i2c_dev_s {
 CMSDK_AT_APB_I2C_TypeDef *base;
 bool enable_data_pullup;

 int rx_head, rx_tail;
 uint8_t rx_buf[I2C_BUF_SIZE];

 int tx_head, tx_tail;
 uint8_t tx_address;
 uint8_t tx_buf[I2C_BUF_SIZE];
} i2c_dev_t;

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 50 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

i2c_init is the initialization function for I2C. It would set the I2C pin assignment according to the chip
and below define. The default setting is defined in i2c.c, and it can be changed by defining the setting
in makefile. For the pin multiplexing, please refer to section 2.7 of the Pin multiplexing in ATM3_ATM2
Reference Manual (available on the Atmosic support website).

#ifndef CFG_5x5_I2C0_SCK
#define CFG_5x5_I2C0_SCK 9
#endif

#ifndef CFG_5x5_I2C0_SDA
#define CFG_5x5_I2C0_SDA 10
#endif

#ifndef CFG_5x5_I2C1_SCK
#define CFG_5x5_I2C1_SCK 11
#endif

#ifndef CFG_5x5_I2C1_SDA
#define CFG_5x5_I2C1_SDA 13
#endif

#ifndef CFG_6x6_I2C0_SCK
#define CFG_6x6_I2C0_SCK 29
#endif

#ifndef CFG_6x6_I2C0_SDA
#define CFG_6x6_I2C0_SDA 30
#endif

#ifndef CFG_6x6_I2C1_SCK
#define CFG_6x6_I2C1_SCK 12
#endif

#ifndef CFG_6x6_I2C1_SDA
#define CFG_6x6_I2C1_SDA 13
#endif

For I2C clock frequency, it can be set by the i2c_SetClock.

CONFIDENTIAL

https://atmosic.com/login/

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 51 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

EX: I2C 0, pullup data pin, clock frequency: 100KHz
static i2c_dev_t i2c_dev = {
 .base = CMSDK_I2C0,
 .enable_data_pullup = true
};
#define I2C_CLK_100K 100000

i2c_init(&i2c_dev);
i2c_SetClock(&i2c_dev, I2C_CLK_100K);

For the i2c module, there are APIs for I2C communication steps and it can be composed to a procedure
for a master to access a slave device.

API Name Purpose Parameter Description

void i2c_init(i2c_dev_t *i2c) Initialize I2C device
structure

i2c: device structure

void i2c_SetClock(i2c_dev_t *i2c, uint32_t Hertz) Configure I2C clock
frequency

i2c: device structure
Hertz: clock frequency

int i2c_requestFrom(i2c_dev_t *i2c, uint8_t address,
int quantity, bool stop)

Initiate read
transaction from I2C
slave device

i2c: device structure
address: i2c slave address
quantity: Number of bytes to read from
slave.
stop: Signal stop after transaction
return: Success: number of bytes requested
from bus. Failure: negative i2c_et_t failure
code

int i2c_available(i2c_dev_t *i2c) Poll status of current
read transaction

i2c: device structure
Number of bytes available to read via
i2c_read()

uint8_t i2c_read(i2c_dev_t *i2c) Read next byte of
data.

i2c: device structure
return: Next byte of data

void i2c_beginTransmission(i2c_dev_t *i2c, uint8_t
address)

Initiate write
transaction to I2C
slave.

i2c: device structure
address: i2c slave address

int i2c_write_byte(i2c_dev_t *i2c, uint8_t value) Append single byte to
current write
transaction

i2c: device structure
value: write data
return:Success: 1 Failure: 0

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 52 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

int i2c_write_block(i2c_dev_t *i2c, const uint8_t
*data, int length)

Append bytes to
current write
transaction

i2c: device structure
data: Block of bytes to append.
int: length
return: Number of bytes actually added.

i2c_et_t i2c_endTransmission(i2c_dev_t *i2c, bool
stop)

Finalize current write
transaction and wait
for completion.

i2c: device structure
stop: Signal stop after transaction
return: error codes

Table 15 - Atmosic I2C API Description

In the SDK, there are some sensor drivers using I2C, ex: adt7420/bme680/lis3dh. Those drivers can be
reference code for I2C applications. In the section, use lis3dh as an example for I2C read / write
procedure .

The lis3dh_read API is to read data from the lis3dh register. First, write one byte
data for the register address and then readback the data.

static int lis3dh_read(uint8_t reg_addr, uint8_t *data, int length)
{
 i2c_beginTransmission(&i2c_dev, I2C_LIS3DH_ADDR);
 i2c_write_byte(&i2c_dev, reg_addr);
 int ret = i2c_endTransmission(&i2c_dev, false);
 if (ret != I2C_ET_SUCCESS) {
 DEBUG_TRACE("I2C eT=%d", ret);
 return 0;
 }
 ret = i2c_requestFrom(&i2c_dev, I2C_LIS3DH_ADDR, length, true);
 if (ret != length) {
 DEBUG_TRACE("I2C rF=%d", ret);
 return 0;
 }

 length = i2c_available(&i2c_dev);
 for (int i = 0; i < length; i++) {
 data[i] = i2c_read(&i2c_dev);
 }

 return length;
}

The lis3dh_write API is to write the data for the lis3dh register.

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 53 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

static int lis3dh_write(uint8_t reg_addr, uint8_t *data, int length)
{
 i2c_beginTransmission(&i2c_dev, I2C_LIS3DH_ADDR);
 i2c_write_byte(&i2c_dev, reg_addr);
 length = i2c_write_block(&i2c_dev, data, length);
 int ret = i2c_endTransmission(&i2c_dev, true);
 if (ret != I2C_ET_SUCCESS) {
 DEBUG_TRACE("I2C eT=%d", ret);
 return 0;
 }
 return length;
}

4.3 SPI Driver
The ATM2/3 can support general purpose four pins SPI master port with mode 0 (CPOL=0, CPHA=0),
and the SPI port clock frequency is programmable and ranges from 7.8 KHz to 8 MHz. The Atmosic
application framework provides SPI modules with the associated APIs for SPI read/write
communication.

Figure 24- Timing Diagram For SPI Mode 0 - Sample At Rising Edge

4.3.1 Pin Assignment for SPI
For ATM2/3, it supports 2 set SPI and please refer to section 2.7 of the Pin multiplexing in
ATM3_ATM2 Reference Manual for the related pin . There are four pins - CS, CLK, MISO, MOSI for SPI
communication.

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 54 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

Figure 25- SPI Pin

Please do related pin assignment with PIN_SELECT API and enable it with WRPR_CTRL_SET.

EX: SPI0, CS: P10, CLK: P20, MOSI: P22,
PIN_SELECT(13, SPI0_MISO);
PIN_SELECT(22, SPI0_MOSI);
PIN_SELECT(10, SPI0_CS);
PIN_SELECT(20, SPI0_CLK);

WRPR_CTRL_SET(CMSDK_SPI0, WRPR_CTRL__CLK_ENABLE);

4.3.2 SPI Module
The SPI module is implemented in rom code. The spi module exports the APIs for application layer to
read/write with SPI slave device.

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 55 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

Figure 26 - SPI Module

The input spi_dev_t for the SPI APIs can be configured according to the SPI set and SPI clock. The
CMSDK_AT_APB_SPI_TypeDef can be selected to CMSDK_SPI0 or CMSDK_SPI1. For SPI clock
frequency, it can be set by the clkdiv. SPI clock would be system clock/(2*(clkdiv+1)), and the system
clock is 16 MHz.

typedef struct spi_dev_s {
 CMSDK_AT_APB_SPI_TypeDef *base;
 uint16_t clkdiv;
 uint8_t dummy_cycles;
} spi_dev_t;

EX: SPI 0 with 4MHz clock frequency
static spi_dev_t const 4M_spi0 = { CMSDK_SPI0, 1, 0};

For SPI communication, it transits with 1 byte opcode. The opcode byte can not be removed. It would
be the first byte data in MOSI, and the first byte data in MISO would be updated to the
OPCODE_STATUS register.

#define SPI_TRANSACTION_STATUS__OPCODE_STATUS__SHIFT 8
#define SPI_TRANSACTION_STATUS__OPCODE_STATUS__WIDTH 8
#define SPI_TRANSACTION_STATUS__OPCODE_STATUS__MASK 0x0000ff00U
#define SPI_TRANSACTION_STATUS__OPCODE_STATUS__READ(src) \
 (((uint32_t)(src)\
 & 0x0000ff00U) >> 8)

For the SPI module, it provides read/write APIs for 1 to 4 bytes. See Table 16.

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 56 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

API Name Purpose Parameter Description

uint8_t spi_read(const spi_dev_t *spi, uint8_t opcode)
uint16_t spi_read_2(const spi_dev_t *spi, uint8_t opcode)
uint32_t spi_read_3(const spi_dev_t *spi, uint8_t opcode)
uint32_t spi_read_4(const spi_dev_t *spi, uint8_t opcode)

Read 1~4 byte
data

spi_dev_t : spi configuration
opcode: the first byte data for MOSI
return: the 2nd~5th byte data of MISO

void spi_write(const spi_dev_t *spi, uint8_t opcode, uint8_t
data)
void
spi_write_2(const spi_dev_t *spi, uint8_t opcode, uint16_t
data)
void
spi_write_3(const spi_dev_t *spi, uint8_t opcode, uint32_t
data)
void
spi_write_4(const spi_dev_t *spi, uint8_t opcode, uint32_t
data)

Write 1~4 byte
data to slave

spi_dev_t : spi configuration
opcode: the first byte data for MOSI
data: the 2nd~5th byte data for MOSI

Table 16 - Atmosic SPI API Description

CONFIDENTIAL

Atmosic Application Development Guide

 PRELIMINARY

CONFIDENTIAL 57 September 29, 2021
 Doc. No. ATMx2xx-DGAFW-0070

ATMOSIC TECHNOLOGIES - DISCLAIMER

This product document is intended to be a general informational aid and not a substitute for any literature or labeling
accompanying your purchase of the Atmosic product. Atmosic reserves the right to amend its product literature at any
time without notice and for any reason, including to improve product design or function. While Atmosic strives to make
its documents accurate and current, Atmosic makes no warranty or representation that the information contained in this
document is completely accurate, and Atmosic hereby disclaims (i) any and all liability for any errors or inaccuracies
contained in any document or in any other product literature and any damages or lost profits resulting therefrom; (ii) any
and all liability and responsibility for any action you take or fail to take based on the information contained in this
document; and (iii) any and all implied warranties which may attach to this document, including warranties of fitness for
particular purpose, non-infringement and merchantability. Consequently, you assume all risk in your use of this document,
the Atmosic product, and in any action you take or fail to take based upon the information in this document. Any
statements in this document in regard to the suitability of an Atmosic product for certain types of applications are based
on Atmosic’s general knowledge of typical requirements in generic applications and are not binding statements about the
suitability of Atmosic products for any particular application. It is your responsibility as the customer to validate that a
particular Atmosic product is suitable for use in a particular application. All content in this document is proprietary,
copyrighted, and owned or licensed by Atmosic, and any unauthorized use of content or trademarks contained herein is
strictly prohibited.

Copyright ©2021 by Atmosic Technologies. All rights reserved.

www.atmosic.com

CONFIDENTIAL

	Atmosic Application Development Guide
	Revision History
	Table of Contents
	List of Figures
	List of Tables
	1 Overview
	1.1 Software Architecture
	1.2 Application Framework

	2 Bluetooth LE Application
	2.1 Bluetooth LE Connection Flow
	2.1.1 Atmosic GAP Modules
	atm_gap_param Module
	atm_gap Module

	2.2 Profile Registration
	2.3 Initialization
	2.4 Device Discovery - Advertising
	2.4.1 Atmosic Advertisement Modules
	2.4.2 atm_adv_param Module
	Get parameter from Flash NVDS
	Get parameter from predefined structure
	Using runtime modified parameter

	2.4.3 atm_adv Module

	2.5 Device Discovery -Scanning
	2.5.1 Atmosic Scan Modules
	2.5.2 atm_scan_param Module
	Get parameter from Flash NVDS
	Get parameter from predefined structure
	Using runtime modified parameter

	2.5.3 atm_scan Module

	2.6 Connection Establishment
	2.6.1 Atmosic Initiator Modules
	2.6.2 atm_init_param Module
	Get parameter from predefined structure
	Using runtime modified parameter

	2.6.3 atm_init Module

	2.7 Connection Mechanism
	2.7.1 Detailed LE Connection Flow

	3 System Utilities
	3.1 Application State Machine
	3.2 Log Utility
	3.2.1 ATM_LOG Macro
	3.2.2 Debug Log Level
	3.2.3 How to Use

	3.3 Power Management
	3.3.1 Power Saving Modes
	3.3.2 Power Mode Lock
	3.3.3 Power Manager API
	3.3.4 atm_pm lock example

	3.4 Software Timer
	3.4.1 Software Timer API
	3.4.2 sw_timer example

	3.5 Software Event
	3.5.1 Software Event API
	3.5.2 sw_event example

	3.6 AT Command

	4 Hardware Drivers
	4.1 GPIO Driver
	4.1.1 atm_gpio Module

	4.2 I2C Driver
	4.2.1 i2c Module

	4.3 SPI Driver
	4.3.1 Pin Assignment for SPI
	4.3.2 SPI Module

