
HID_Remote Example

 PRELIMINARY
Application Note

©2021, Atmosic Technologies Inc. All rights reserved. Atmosic logo is a registered trademark of Atmosic Technologies Inc. All
other trademarks are the properties of their respective holders. This preliminary document is subject to change without notice.

 CONFIDENTIAL 1 December 22, 2021
 Doc. No. ATMxxxx-ANHID--0052

HID_Remote Example Application Note

Revision History

Date Version Description

July 14, 2021 0.50 Initial version created.

September 30, 2021 0.51 Updated Figure 1 - Remote Example Hierarchy, Table 3 - IR and PV Build
Options, 3 State Machines, 8 Voice Search, 9 LED

December 22, 2021 0.52 Updated Table 3 - IR and PV Build Options, 6.2.2 Connection parameters and
negotiation, Table 28 - ATVV Configuration Options, Table 29 - ATVV APIs,
Table 31 - Rc_atvv APIs and Callers, 8.2.1.2.2 Voice search (o.4e), added
8.2.1.2.3 Initialization (1.0), 8.2.1.2.4 Voice search (1.0)

CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 2 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

Table of Contents

1 Overview 6

1.1 Quick Start 6

1.2 Hierarchy and Files 8

2 Building Application 9

2.1 Devices 9

2.2 Features 9

2.3 Build Combinations 10

3 State Machines 11

3.1 MMI State Descriptions 11

3.2 GAP State Descriptions 16

4 Power Management 17

5 Hardware Setup 18

5.1 Pin Setup 18

5.2 Configure Flash Layout 20

6 Bluetooth Parameters 21

6.1 Timeout Parameters 22

6.1.1 Timeout after HID ready 22

6.1.2 Timeout after connected 22

6.1.3 Timeout to poll battery capacity 22

6.2 GAP Parameters 22

6.2.1 Advertisement 22

6.2.2 Connection parameters and negotiation 22

6.3 Device Information Service 24

7 User Input Management 25

7.1 Keyboard 25

7.2 Atm_key 26

7.3 Rc_mmi_vkey 26

7.3.1 Key index, virtual key number and key codes 26

7.4 Virtual Key Tables 27

7.5 Bluetooth Key 29

7.5.1 ble_hogpd 30

7.5.2 rc_hogp 31

7.6 IR Key 32

7.6.1 IR 32

7.6.2 Nec_ir 33

CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 3 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

7.6.3 Rc_ir 34

8 Voice Search 35

8.1 Audio Input 36

8.1.1 PDM 37

8.1.2 Encoders 38

8.1.2.1 Adpcm_enc 38

8.1.2.2 Sbc_enc_wrapper 38

8.1.3 Rc_pdm 39

8.2 Audio Transmission 40

8.2.1 Voice over ATVV 40

8.2.1.1 ATVV modules 40

8.2.1.1.1 ble_atvv 40

8.2.1.1.2 rc_atvv 42

8.2.1.2 ATVV Sequence Chart 43

8.2.1.2.1 Initialization (0.4e) 43

8.2.1.2.2 Voice search (0.4e) 44

8.2.1.2.3 Initialization (1.0) 47

8.2.1.2.4 Voice search (1.0) 47

8.2.2 Voice over HID (VoHID) 48

8.2.2.1 VoHID Modules 48

8.2.2.1.1 ble_hogpd 48

8.2.2.1.2 rc_hogpd 48

8.2.2.1.3 rc_hidau 48

8.2.2.2 VoHID Sequence Chart 49

8.2.2.2.1 Initialization 49

8.2.2.2.2 Voice search 49

9 LED 51

CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 4 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

List of Figures

Figure 1 - Remote Example Hierarchy

Figure 2 - rc_mmi State Transitions in ATVV Device (Ordinary Cases)

Figure 3 - rc_mmi State Transitions in VoHID Device (Ordinary Cases)

Figure 4 - rc_mmi State Transitions in ATVV Device (Disconnection or Error Cases)

Figure 5 - rc_mmi State Transitions in VoHID Device (Disconnection or Error Cases)

Figure 6 - rc_mmi Transition Array

Figure 7 - rc_gap State Transition

Figure 8 - Default Flash Layout of ATMx221

Figure 9 - Default Flash Layout of ATMx202

Figure 10 - Key Scan Matrix Software Hierarchy

Figure 11 - HID API Hierarchy

Figure 12 - IR Key Hierarchy

Figure 13 - Google TV Voice Search Function Hierarchy

Figure 14 - Initialization Sequence

Figure 15 - ATVV Voice Search Sequence

Figure 16 - VoHID Voice Search Sequence

List of Tables

Table 1 - Modules’ Functionality

Table 2 - Device Build Options

Table 3 - IR and PV Build Options

Table 4 - rc_mmi States

Table 5 - rc_mmi Operations

Table 6 - rc_gap States

Table 7 - rc_gap Operations

Table 8 - Power Management Locks and Description

Table 9 - Make File Pin Setting Based on LAYOUT Value

Table 10 - Keyboard Events

Table 11 - Keycodes Mapping

Table 12 - Virtual Key Tables

Table 13 - rc_key_event_hid_not_ready Virtual Key Table

Table 14 - rc_key_event_hid_ready Virtual Key Table

Table 15 - rc_key_event_rf_test Virtual Key Table

Table 16 - ble_hogpd_state_t States

Table 17 - ble_hogpd APIs and Callback Functions

Table 18 - rc_hogp APIs and Caller

Table 19 - IR APIs

Table 20 - Nec_ir APIs

Table 21 - rc_ir APIs

CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 5 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

Table 22 - PDM Microphone Configuration Options

Table 23 - PDM Driver APIs

Table 24 - ADPCM Encoder APIs

Table 25 - Sbc_enc_wrapper Module APIs and Macros

Table 26 - rc_pdm Features.

Table 27 - rc_dpm Options

Table 28 - ATVV Configuration Options

Table 29 - ATVV APIs

Table 30 - ATVV Callback Functions

Table 31 - Rc_atvv APIs and Callers

Table 32 - ATVV Initialization Sequence Mapping Points

Table 33 - Voice Search Sequence Mapping Points

Table 34 - rc_hidau APIs and Callers

Table 35 - Voice Search Sequence Mapping Points

Table 36 - LED Behavior

CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 6 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

1 Overview

This application note describes the settings, functionality, and code flow of the (Human Interface

Device) HID_remote example code running on an Atmosic ATM2/ATM3. The Atmosic HID_remote

example is developed as a Bluetooth LE HOGP (HID over GATT profile) remote controller with

voice recognition functionalities, which include Google Voice 0.4e/1.0 specification and voice over

HID with ADPCM and other encoder, such as mSBC (Users should have their own license for

mSBC)

1.1 Quick Start

● Install Atmosic SDK 4.1.0 or latest version

● Refer to section 5.1 Pin Setup

● Go to the platform/atmx1/ATMx22xx-xx3x/example/HID_remote folder of the Atmosic

Software Development Kit (SDK) and type “make clean” then “make run_all

<LAYOUT=ATMx221 or ATMx202>” to program Flash (see section 5.2 Configure Flash

Layout). Press and hold the <OK>+<-> for 5 seconds (see section 7 User Input

Management), the LED will blink (see 9 LED) and start sending pairing advertisements with

“Atmosic remote 100” as the device name.

● In the Android TV, select “Settings->Connected Devices->Connect remote” and pair the

“Atmosic remote 100”.

● After pairing successfully, the TV could be controlled by pressing the key matrix:

1 atm2 or atm3
2 ATM22xx or ATM32xx
3 x0x or x1x

CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 7 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

● Search by pressing the MIC button, and speak into it to perform voice search.

CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 8 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

1.2 Hierarchy and Files

The example was designed to allow users to easily adapt to their final products. Every module is

designed to be a single function and interacts with a single module of the Atmosic framework.

Figure 1 shows the hierarchy of modules in the remote example.

Figure 1 - Remote Example Hierarchy

Table 1 provides description of the modules' functionality.

Directory File Name Description

src/ rc_mmi.c
rc_mmi.h

Interacting with all other modules to maintain the
flow according to MMI states.

rc_mmi_vkey.c
rc_mmi_vkey.h
rc_mmi_vkey_default_x202.h
rc_mmi_vkey_default_x221.h

Handle virtual key behavior in different MMI states.
Key code definitions of different products.

app_config.h Bluetooth parameters.

src/bt/ rc_gap.c
rc_gap.h

Agent of GAP. It provides related operations for
rc_mmi and maintains Bluetooth states and informs
rc_mmi while changed.

rc_atvv.c
rc_atvv.h

Agent of ATVV. It provides voice search
functionalities for rc_mmi and rc_mmi_vkey.

rc_hogp.c
rc_hogp.h

Agent of HOGP. It provides HID (Human Interface
Device) functionality to rc_mmi and rc_mmi_vkey
to send reports to TV.

rc_hidau.c
rc_hidau.h

Interact with rc_pdm and rc_hogp to handle Voice
over HID.

CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 9 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

rc_ota.c
rc_ota.h

Specific Over-the-Air (OTA) parameters to ble_ota.

src/
non_bt/

rc_pdm.c
rc_pdm.h

Provide an interface for rc_mmi and rc_atvv to
control Pulse Density Modulation (PDM) start, stop,
pause and resume. It also acts as a collaborator of
audio flow. It passes raw Pulse Code Modulation
(PCM) to Adaptive differential pulse-code
modulation (ADPCM) encoder then sends it to
rc_atvv while streaming is on.

rc_ir.c
rc_ir.h

Provide an interface for rc_mmi_vkey to send
Infrared (IR) codes.

Table 1 - Modules’ Functionality

2 Building Application
In this application, two series of chips, variable features and configurations are supported.

Parameter configurations are defined in app_config.h.

2.1 Devices

Two series of Atmosic devices are supported by this application. The devices are selected through

a LAYOUT variable from the command line. Table 2 describes build options of the devices.

Device Description Build Option

ATMx221
● 6x6 mm package
● External Flash

LAYOUT=ATMx221

ATMx202
● 5x5 mm package
● Internal Flash

LAYOUT=ATMx202

Table 2 - Device Build Options

If LAYOUT variable is not added in command line, ATMx221 option will be applied.

2.2 Features

In this application, additional features of IR and Photovoltaics (PV) cell energy harvesting are

provided. Table 3 describes the build options:

CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 10 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

Feature Description Build Option

IR

Disconnected
Only

NEC IR transmission only on
advertisement.

CFG_RC_IR=1

All time NEC IR transmission at any time. CFG_RC_IR=1
CFG_RC_IR_ON_HID=1

PV
Power harvesting from PV Cell.
This feature is only allowed with
ATM3xxx.

PV_HARV_EN=1

Voice

ATVV 0.4e
Voice search complies with Google
Voice over Bluetooth LE 0.4e.

*(default)

ATVV 1.0

Voice search complies with Google
Voice over Bluetooth LE 1.0.

Three assistant models are introduced in
this edition. Users can specify which
models are supported by the remote
application.
0x0: Legacy (On-request, *default)
0x1: Legacy and PTT (press-to-talk)
0x3: Legacy, PTT and HTT (hold-to-talk)
Others: invalid

CFG_ATVV_VER_100=1
CFG_ATVV_ASST_MODEL
=< 0 or 1 or 3 >

ADPCM over
HID

Voice encoded with ADPCM encoder is
sent through HID.

CFG_VOICE=HID_ADPCM

mSBC over
HID

Voice encoded with mSBC encoder is
sent through HID.

CFG_VOICE=HID_MSBC

Table 3 - IR and PV Build Options

2.3 Build Combinations

By assigning build options of features (IR, PV and Voice) and devices (ATMx221 and

ATMx202), the user can create his own combination.

For example, an ATM3202 device with PV harvesting and Google Voice over Bluetooth LE 1.0
and without IR function, the build command would be “make LAYOUT=ATMx202
PV_HARV_EN=1 CFG_ATVV_VER_100=1”.

CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 11 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

3 State Machines
State machines are the core of the application. Users can easily change and optimize design by
understanding the state machines. Refer to 3.1 MMI State Descriptions and 3.2 GAP State
Descriptions sections. State machines are created by defining state transition table mechanisms
provided by the atm_asm module.

3.1 MMI State Descriptions

In this application, 12 Man Machine Interface (MMI) states and 17 operations are defined in

rc_mmi. Table 4 describes those states.

MMI State Name Description

MMI_S_BOOTED The initial state. Device booted or woke up from hibernation.

MMI_S_INITING Under initialization.

MMI_S_IDLE The end state (Disconnected then enter hibernate) or
intermediate state (Initialized then pairing or reconnecting).

MMI_S_PAIRING Bonding with new TV.

MMI_S_RECONNING Reconnecting the bonded TV.

MMI_S_CONNECTED Bluetooth connected but profiles are not ready.

MMI_S_DISCONNING Disconnection is ongoing due to timer timeout events.

MMI_S_RF_TEST Under RF testing

States exist only in Google Voice over Bluetooth LE

MMI_S_HID_ONLY HOGP is ready but ATVV is not.

MMI_S_ATVV_ONLY ATVV is ready but HOGP is not.

MMI_S_HID_ATVV Both ATVV and HOGP are ready.

MMI_S_ATVVING Voice streaming is ongoing.

States exist only in Voice over HID

MMI_S_HID_READY HOGP is ready

MMI_S_HID_STREAMING Voice streaming is ongoing.

Table 4 - rc_mmi States

CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 12 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

Operations are used to control the state machine transition. Each operation is triggered by rc_xxx

modules. Table 5 describes the operations and the triggering module.

Operations Description Triggered by

MMI_OP_INITING Initialization is starting. rc_mmi

MMI_OP_INIT_DONE Initialization is finished. rc_gap

MMI_OP_RECONNING Device is starting advertising for
reconnection.

rc_gap

MMI_OP_PAIRING Device is starting advertising for pairing. rc_gap

MMI_OP_PAIR_SUCCESS Device is paired successfully. rc_gap

MMI_OP_CONNECTED Device is connected. rc_gap

MMI_OP_HID_READY HID is ready. rc_hogp

MMI_OP_HID_UNREADY HID becomes unready. rc_hogp

MMI_OP_OPEN_MIC ATVV streaming started. rc_atvv/rc_hidau

MMI_OP_CLOSE_MIC ATVV streaming stopped. rc_atvv/rc_hidau

MMI_OP_DISCONNING MMI wants to disconnect the link. rc_mmi

MMI_OP_ADV_STOPPED Advertisement is stopped normally. rc_gap

MMI_OP_RECONN_FAIL Reconnection failed. rc_gap

MMI_OP_RECONN_TOUT Reconnection timeout rc_gap

MMI_OP_PAIR_FAIL Pairing failed. rc_gap

MMI_OP_PAIR_TOUT Pairing timeout rc_gap

MMI_OP_DISCONNED Link is disconnected rc_gap

States exist only in Google Voice over Bluetooth LE

MMI_OP_ATVV_READY ATVV is ready. rc_atvv

MMI_OP_ATVV_UNREADY ATVV becomes unready. rc_atvv

Table 5 - rc_mmi Operations

CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 13 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

By triggering those operations, states will transition. Figure 2 and Figure 3 show the ordinary
transition paths of rc_mmi states. Figure 4 and Figure 5 show the transition paths of rc_mmi states
in disconnection or error cases.

Figure 2 - rc_mmi State Transitions in ATVV Device (Ordinary Cases)

Figure 3 - rc_mmi State Transitions in VoHID Device (Ordinary Cases)

CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 14 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

Figure 4 - rc_mmi State Transitions in ATVV device (Disconnection or Error Cases)

CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 15 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

Figure 5 - rc_mmi State Transitions in VoHID Device (Disconnection or Error Cases)

Figure 6 shows rc_mmi state transition table mmi_s_tbl[]. Each entry of this table consists of two

states (A and B), an operation (O) and a function (F), that means state A will change to state B

when receiving operation O and function F will be executed. For example, the MMI_S_PAIRING

state receiving MMI_OP_PAIR_SUCCESS operation will move to MMI_S_CONNECTED and call

mmi_s_pairing_stopped() to stop LED blinking. Please refer to the source code for more

information.

static state_entry const mmi_s_tbl[] = {

 {MMI_S_BOOTED, MMI_OP_INITING, MMI_S_INITING, mmi_s_booted_op_initing},

 {MMI_S_IDLE, MMI_OP_RECONNING, MMI_S_RECONNING, NULL},

 {MMI_S_IDLE, MMI_OP_ATVV_UNREADY, MMI_S_IDLE, NULL},

 {MMI_S_IDLE, MMI_OP_PAIRING, MMI_S_PAIRING, mmi_s_paring_started},

 {MMI_S_IDLE, MMI_OP_DISCONNING, MMI_S_IDLE, NULL},

 {MMI_S_INITING, MMI_OP_INIT_DONE, MMI_S_IDLE, mmi_s_initing_op_done,},

 {MMI_S_INITING, MMI_OP_RECONNING, MMI_S_RECONNING, NULL},

 {MMI_S_INITING, MMI_OP_PAIRING, MMI_S_PAIRING, mmi_s_paring_started},

 {MMI_S_RECONNING, MMI_OP_CONNECTED, MMI_S_CONNECTED, mmi_s_connected},

 {MMI_S_RECONNING, MMI_OP_RECONN_TOUT, MMI_S_IDLE, NULL},

 {MMI_S_RECONNING, MMI_OP_ADV_STOPPED, MMI_S_IDLE, NULL},

 {MMI_S_PAIRING, MMI_OP_CONNECTED, MMI_S_PAIRING, mmi_s_connected},

 {MMI_S_PAIRING, MMI_OP_DISCONNED, MMI_S_IDLE, mmi_s_paring_stopped},

 {MMI_S_PAIRING, MMI_OP_PAIR_FAIL, MMI_S_IDLE, mmi_s_paring_stopped},

 {MMI_S_PAIRING, MMI_OP_PAIR_TOUT, MMI_S_IDLE, mmi_s_paring_stopped},

 {MMI_S_PAIRING, MMI_OP_PAIR_SUCCESS, MMI_S_CONNECTED, mmi_s_paring_stopped},

 {MMI_S_PAIRING, MMI_OP_ADV_STOPPED, MMI_S_IDLE, mmi_s_paring_stopped},

 {MMI_S_CONNECTED, MMI_OP_ATVV_READY, MMI_S_ATVV_ONLY, NULL},

CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 16 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

 {MMI_S_CONNECTED, MMI_OP_HID_READY, MMI_S_HID_ONLY, mmi_s_hid_ready},

 {MMI_S_CONNECTED, MMI_OP_DISCONNED, MMI_S_IDLE, NULL},

 {MMI_S_CONNECTED, MMI_OP_ATVV_UNREADY, MMI_S_CONNECTED, NULL},

 {MMI_S_CONNECTED, MMI_OP_PAIR_SUCCESS, MMI_S_CONNECTED, NULL},

 {MMI_S_CONNECTED, MMI_OP_PAIR_FAIL, MMI_S_CONNECTED, NULL},

 {MMI_S_HID_ONLY, MMI_OP_ATVV_READY, MMI_S_HID_ATVV, mmi_s_hid_ready},

 {MMI_S_HID_ONLY, MMI_OP_ATVV_UNREADY, MMI_S_HID_ONLY, NULL},

 {MMI_S_ATVV_ONLY, MMI_OP_ATVV_UNREADY, MMI_S_CONNECTED, NULL},

 {MMI_S_ATVV_ONLY, MMI_OP_HID_READY, MMI_S_HID_ATVV, mmi_s_hid_ready},

 {MMI_S_HID_ATVV, MMI_OP_ATVV_UNREADY, MMI_S_HID_ONLY, NULL},

 {MMI_S_HID_ATVV, MMI_OP_OPEN_MIC, MMI_S_ATVVING, mmi_s_open_mic},

 {MMI_S_HID_ATVV, MMI_OP_DISCONNED, MMI_S_IDLE, mmi_s_disconnected},

 {MMI_S_ATVV_ONLY, MMI_OP_DISCONNING, MMI_S_DISCONNING, mmi_s_disconnecting},

 {MMI_S_HID_ATVV, MMI_OP_DISCONNING, MMI_S_DISCONNING, mmi_s_disconnecting},

 {MMI_S_HID_ONLY, MMI_OP_DISCONNING, MMI_S_DISCONNING, mmi_s_disconnecting},

 {MMI_S_HID_ONLY, MMI_OP_DISCONNED, MMI_S_IDLE, mmi_s_disconnected},

 {MMI_S_ATVVING, MMI_OP_CLOSE_MIC, MMI_S_HID_ATVV, mmi_s_close_mic},

 {MMI_S_DISCONNING, MMI_OP_DISCONNED, MMI_S_IDLE, NULL},

 {MMI_S_RF_TEST, MMI_OP_DISCONNED, MMI_S_RF_TEST, NULL},

};

Figure 6 - rc_mmi Transition Array

3.2 GAP State Descriptions

As rc_mmi, the state machine of rc_gap is created in the application layer to simplify the design.

There are 7 states and 9 operations defined in rc_gap state machines. Table 6 describes those

states.

States Description

GAP_S_INIT Initial state.

GAP_S_IDLE No ongoing Bluetooth activity. Enter hibernate if no further request
from rc_mmi.

GAP_S_ADV0ING Reconnecting advertisement is ongoing.

GAP_S_ADV1ING Pairing advertisement is ongoing.

GAP_S_ADV_STOPPING Advertisement is stopping.

GAP_S_CONNECTED Bluetooth link exists.

GAP_S_RFTEST RF test mode is ongoing.

Table 6 - rc_gap States

Each operation is triggered by atm_gap modules. Table 7 describes the operations and the

triggering function.

CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 17 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

Operations Description Trigger by

GAP_OP_INITING Bluetooth is initialing. rc_gap_init()

GAP_OP_INITED Bluetooth initialized. rc_gap_init_cfm()

GAP_OP_ADV0ING ADV 0 is started rc_gap_adv_start_cfm()

GAP_OP_ADV1ING ADV 1 is started rc_gap_adv_start_cfm()

GAP_OP_ADV_STOP ADV stopped due to connection. rc_gap_adv_stop_ind()

GAP_OP_ADV_STOP_TOUT ADV stopped due to timeout rc_gap_adv_stop_ind()

GAP_OP_ADV_STOPPING ADV is stopping by application. rc_gap_discoverable(false)

GAP_OP_CONNECTED Bluetooth is connected. rc_conn_ind()

GAP_OP_DISCONNED Bluetooth is disconnected rc_disc_ind()

Table 7 - rc_gap Operations

Figure 7 shows the transition paths of rc_gap states.

Figure 7 - rc_gap State Transition

4 Power Management
In this example code, the atm_pm module’s lock scheme is used to manage whether or not to

prevent entering a power state. Three kinds of locks from high to low power are

CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 18 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

PM_LOCK_SLEEP, PM_LOCK_RETENTION and PM_LOCK_HIBERNATION which are

associated with sleep, retention and hibernation respectively. Once all the locks in one level are

unlocked and no higher level lock is locked, the system will enter that power state. Table 8 lists all

the locks provided in this example and descriptions:

PM_LOCK_SLEEP

Name Modules Description

ksm_lock_sleep driver/keyboard Mostly stay unlocked. Only be locked for key
interrupt processing.

pdm_lock_sleep driver/PDM Locked/unlocked depends on when PDM recording
is started/stopped.

PM_LOCK_HIBERNATION

Name Modules Description

vk_lock_hiber driver/atm_vkey Locked when virtual keys are not all released.

led_lock_hiber driver/led_blink Locked when the LED is blinking.

rc_gap_lock_hib rc_gap Locked when rc_gap state is not GAP_S_IDLE.

Table 8 - Power Management Locks and Description

5 Hardware Setup
The makefile in this application includes two kinds of predefined settings for IR, PDM, keypad and

Flash layout, which is decided by value of the LAYOUT variable. The value of LAYOUT would be

ATMx221 or ATMx202. If not set, it will be ATMx221 by default.

5.1 Pin Setup

Table 9 lists the pin settings in makefile according to LAYOUT value of ATMx221 and ATMx202:

ATMx221

Module Setting in Makefile Pin Description

keyboard NUM_ROW=4

NUM_COL=4

row 0 1 2 3

Use default 4 by 4 key matrix

settings.

CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 19 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

pin P23 P22 P21 P20

ksi 0 1 2 3

col 0 1 2 3

pin P31 P30 P29 P28

kso 0 1 2 3

Please refer to

keyboard_param.h for more

details.

led_blink CFG_LED_GPIO=28

led io P32 (GPIO 28)

LED indicator. Please refer to

led_blink.c for more details.

pdm *(default)

pdm clock P24

Pdm data P25

Please refer to pdm.c for more

details.

rc_pdm *(default)

pdm io P26 (GPIO 22)

PDM device power control.

Please refer to rc_pdm.c for

more detail.

ir IR_IO=13

ir io P13 (GPIO13)

Please refer to ir.c for more

details.

ATMx202

Module Setting in Makefile Pin Description

keyboard ROW0=23

ROW0_KSI=0

ROW1=22

ROW1_KSI=1

ROW2=20

ROW2_KSI=3

ROW3=13

ROW3_KSI=6

COL0=30

COL0_KSO=1

COL1=11

COL1_KSO=8

COL2=10

row 0 1 2 3

pin P23 P22 P21 P13

ksi 0 1 2 6

col 0 1 2 3

pin P30 P11 P10 P9

kso 1 8 9 10

Customized key matrix

assignment for 5x5 limited pin

count. Please refer to

keyboard_param.h for more

details.

CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 20 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

COL2_KSO=9

COL3=9

COL3_KSO=10

led_blink CFG_LED_GPIO=29

led io P33 (GPIO 29)

LED indicator. Please refer to

led_blink.c for more details.

Note: this is shared with the

debug log (UART1 TX).

pdm *(default)

pdm clock P24

pdm data P25

Please refer to pdm.c for more

details.

rc_pdm PDM_POWER_SWI

TCH=28

pdm power
switch

P32 (GPIO 28)

PDM device power control.

Please refer to rc_pdm.c for

more detail.

ir IR_IO=20

ir_io P24 (GPIO 20)

Please refer to ir.c for more

detail.

Note: this pin is shared with

pdm_clock

Table 9 - Make File Pin Setting Based on LAYOUT Value

5.2 Configure Flash Layout

OTA feature is enabled by default. The Flash essentially utilizes half of its size. The makefile uses

256 KB (FLASH_SIZE=0x40000) and 512 KB (FLASH_SIZE=0x80000) for ATMx221 and

ATMx202 respectively by default. The NVDS_SIZE default value is 0x8000.

Figure 8 and Figure 9 illustrate the default Flash layout of ATMx221 and ATMx201.

CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 21 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

Figure 8 - Default Flash Layout of ATMx221

Figure 9 - Default Flash Layout of ATMx202

6 Bluetooth Parameters
All the related Bluetooth parameters are defined in src/app_config.h.

CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 22 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

6.1 Timeout Parameters

6.1.1 Timeout after HID ready

A timer with this timeout value (RC_CONN_READY_TOUT_CS) will be set when the link is

connected and HID is ready. When this timeout occurs, the system will disconnect the link and

enter hibernate. The timer will be reset on any of the user input. If this value is zero, the link will

always be maintained. Default value is 0.
#ifndef RC_CONN_READY_TOUT_CS

#define RC_CONN_READY_TOUT_CS 0

#endi

6.1.2 Timeout after connected

A timer with this timeout value (RC_CONN_NOT_READY_TOUT_CS) will be set when the link is

connected but HID is not ready. When this timeout occurs, the system will disconnect the link and

enter hibernate. This timer will be clear after HID is ready. Default value is 1000 (10 seconds).
#ifndef RC_CONN_NOT_READY_TOUT_CS

#define RC_CONN_NOT_READY_TOUT_CS 1000

#endi

6.1.3 Timeout to poll battery capacity

There are two values associated with battery capacity polling timer. When battery capacity is low,

the timer will use RC_LOW_BATT_POLL_TIME_CS as its timeout value. Otherwise it will use

RC_HIGH_BATT_POLL_TIME_CS. Default values are 10000 (100 seconds) and 60000 (600

seconds) respectively.
#define RC_LOW_BATT_POLL_TIME_CS 10000

#define RC_HIGH_BATT_POLL_TIME_CS 6000

6.2 GAP Parameters

6.2.1 Advertisement

This example code uses two advertisement sets, (#define CFG_GAP_ADV_MAX_INST 2).

Please refer to CFG_ADV0_* in app_config.h for reconnecting advertisements and CFG_ADV1_*

for pairing advertisements.

6.2.2 Connection parameters and negotiation

Four parameters are related to the connection parameters: CFG_GAP_CONN_INT_MIN,

CFG_GAP_CONN_INT_MAX, CFG_GAP_CONN_TIMEOUT, and

CFG_GAP_SLAVE_LATENCY
// Minimal connection interval

#define CFG_GAP_CONN_INT_MIN 8

CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 23 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

// Maximal connection interval

#define CFG_GAP_CONN_INT_MAX 8

// Slave latency

#define CFG_GAP_SLAVE_LATENCY 99

// Connection timeout

#define CFG_GAP_CONN_TIMEOUT 300

These four values would reflect the value of peripheral preferred parameters characteristic in GAP

service. Essentially, central will update connection parameters by referring to this characteristic.

Except for the updating from central, peripheral could request itself.Depending on the

CFG_SLAVE_PARAM_NEGO compile option, the device will perform connection parameter

update negotiation after connecting with central. In rc_gap.c - rc_gap_connect_param_nego(),

param_nego is the parameter for connection parameter negotiation. Users can modify the

parameter depending on the application.

void rc_gap_nego_parameter(void)

{

#ifdef CFG_RC_SLAVE_PARAM_NEGO

 if (cur_lidx != GAP_INVALID_CONIDX) {

 static struct gapc_conn_param const conn_param = {

 CFG_GAP_CONN_INT_MIN,

 CFG_GAP_CONN_INT_MAX,

 CFG_GAP_SLAVE_LATENCY,

 CFG_GAP_CONN_TIMEOUT,

 };

 static atm_gap_param_nego_t const param_nego = {

 .param_nego_cfm = rc_gap_param_nego_cfm,

 .force_retry = false,

 .retry_times = RC_PARAM_NEGO_TIMES,

 .check_result = RC_PARAM_NEGO_TOUT_CS,

 .target = &conn_param,

 };

 atm_gap_connect_param_nego(cur_lidx, ¶m_nego);

 }

#endif

}

CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 24 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

6.3 Device Information Service

The strings of device information service such as manufacture name, model name, firmware

revision, software revision, etc,.. are defined with APP_DIS_*. They can be modified by users if

needed.

#define APP_DIS_MANUFACTURER_NAME "Atmosic Tech."

#define APP_DIS_MODEL_NB_STR "ATV-RC-01"

#define APP_DIS_SERIAL_NB_STR "1.0.0.0"

#define RC_VERSION "0.2.0.0"

#define APP_DIS_FIRM_REV_STR RC_VERSION

#define APP_DIS_SW_REV_STR RC_VERSION

#define APP_DIS_HARD_REV_STR "1.0.0"

#define APP_DIS_SYSTEM_ID "\x12\x34\x56\xFF\xFE\x9A\xBC\xDE"

#define APP_DIS_IEEE "\xFF\xEE\xDD\xCC\xBB\xAA"

#define APP_DIS_PNP_ID "\x01\x45\x75\x21\x00\x10\x01"

CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 25 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

7 User Input Management

The remote example uses three modules to complete the user input via key scan matrix: keyboard,

atm_vkey and rc_mmi_vkey. Keyboard is a key scan matrix hardware driver. Figure 8 shows the

hierarchy.

Figure 10 - Key Scan Matrix Software Hierarchy

7.1 Keyboard

The keyboard is a key scan matrix hardware driver. There are two ways to configure the pins for

key matrix in keyboard driver:

1. Use default order: define NUM_ROWS and NUM_COLS in makefile

2. Assign customized order: define ROWx/ROWx_KSI and COLy/COLy_KSO in makefile

Please refer to the pin_setting in keyboard driver of Atmosic SDK API reference for more

information. After the upper layer registers callback, it will generate keyboard events with a key

index when keys are pressed or released. Table 10 shows the keyboard events.

Keyboard events Description

KSM_RELEASE Key index n was pressed. n=r*4+c where r is row and c is column.

KSM_PRESS Key index n was released. n=r*4+c where r is row and c is column.

KSM_ERR_HW_OVF Keyboard driver overflow error.

Table 10 - Keyboard Events

CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 26 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

7.2 Atm_key

atm_vkey is a framework module which handles key behavior such as click, double click, hold...etc,

and generates virtual key events to the upper layer which is rc_mmi_vkey in this example.

7.3 Rc_mmi_vkey

rc_mmi_vkey is the application module which is designed to listen to keyboard events from the

keyboard driver and pass its corresponding virtual key number to atm_vkey. Once atm_vkey

detects virtual key behaviors, the registered callback function will be called to run some Bluetooth

or IR operations.

7.3.1 Key index, virtual key number and key codes

 In this example, the virtual key number is equal to the key index of the keyboard event. Each

virtual key number is associated with bluetooth or IR keycode and varies due to the board design.

That default mapping is defined in rc_mmi_vkey_default_x202.h and

rc_mmi_vkey_default_x221.h. Table 11 lists the mapping of keycodes.

Key
Index

rc_mmi_vkey_default_x221.h rc_mmi_vkey_default_x202.h

Virtual Bluetooth
(page, key)

IR
(addr, cmd)

Virtual Bluetooth
(page, key)

IR
(addr, cmd)

0 VK_POWER (0xC, 0x30) (0x80, 0x46) VK_POWER (0xC, 0x30) (0x80, 0x46)

1 VK_MIC (0xC, 0x221) N/A VK_TVPOWER N/A N/A

2 VK_UP (0xC, 0x42) (0x80, 0x52) VK_UP (0xC, 0x42) (0x80, 0x52)

3 VK_RIGHT (0xC, 0x45) (0x80, 0x1A) VK_RIGHT (0xC, 0x45) (0x80, 0x1A)

4 VK_LEFT (0xC, 0x44) (0x80, 0x06) VK_LEFT (0xC, 0x44) (0x80, 0x06)

5 VK_BACK (0xC, 0x224) (0x80, 0x1B) VK_BACK (0xC, 0x224) (0x80, 0x1B)

6 VK_HOME (0xC, 0x223) (0x80, 0x17) VK_MIC (0xC, 0x221) N/A

7 VK_MENU (0x7, 0x76) (0x80, 0x07) VK_MENU (0x7, 0x76) (0x80, 0x07)

8 VK_OK (0xC, 0x41) (0x80, 0x0F) VK_OK (0xC, 0x41) (0x80, 0x0F)

9 VK_RICE N/A N/A VK_VOLUP (0xC, 0xE9) (0x80, 0x16)

10 VK_PLAY (0xC, 0xCD) N/A VK_HOME (0xC, 0x223) (0x80, 0x17)

11 VK_VOLUP (0xC, 0xE9) (0x80, 0x16) VK_BW (0xC, 0xB6) N/A

CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 27 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

12 VK_DOWN (0xC, 0x43) (0x80, 0x13) VK_DOWN (0xC, 0x43) (0x80, 0x13)

13 VK_BW (0xC, 0xB6) N/A VK_VOLDN (0xC, 0xEA) (0x80, 0x15)

14 VK_FW (0xC, 0xB5) N/A VK_RICE N/A N/A

15 VK_VOLDN (0xC, 0xEA) (0x80, 0x15) VK_FW (0xC, 0xB5) N/A

Table 11 - Keycodes Mapping

7.4 Virtual Key Tables

atm_vkey handles the key behavior and generates events according to the virtual key table

registered by rc_mmi_vkey. In initialization, rc_mmi_vkey registers 3 virtual key tables into

atm_vkey.

For rc_mmi_vkey, these virtual key tables work according to the different MMI states.

In different MMI states, the rc_mmi_vkey will pass vkey into atm_vkey with the corresponding

virtual key table. Table 12 lists 3 tables in different MMI states. Table 13, Table 14 and Table 15

list registered keys in each virtual key table.

Virtual Key Table MMI States

rc_key_event_hid_not_ready

MMI_S_BOOTED
MMI_S_INITING
MMI_S_IDLE
MMI_S_PAIRING
MMI_S_RECONNING
MMI_S_CONNECTED
MMI_S_ATVV_ONLY

rc_key_event_hid_ready

MMI_S_HID_ONLY
MMI_S_HID_ATVV
MMI_S_ATVVING
MMI_S_HID_READY
MMI_S_HID_STREAMING

rc_key_event_rf_test MMI_S_RF_TEST

Table 12 - Virtual Key Tables

rc_key_event_hid_not_ready

CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 28 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

Key Event Action

Down (any key) Save the key index.

Hold (forward+backward) then click (menu) Reset device

Hold (forward+backward) then click (asterisk) Enter RF test mode

Table 13 - rc_key_event_hid_not_ready Virtual Key Table

rc_key_event_hid_ready

Key Event Action

Hold (OK + Vol-) for 2 sec. Delete bonding and enter pairing.

First Down (any key)
Send Bluetooth and Infrared (If enabled)
key

Non-first Down (any key) Send Bluetooth key up.

Last Up (any key) Send Bluetooth key up.

Hold (forward+backward) then click (menu) Reset device

Hold (forward+backward) then click (asterisk)
Enter RF test mode.

Hold (forward+backward) then click (down) Disconnect link

Hold (forward+backward) then click (OK) Key sent auto test

Hold (asterisk) then click (vol+) Audio gain add 1 (value lost after hibernate)

Hold (asterisk) then click (vol-)
Audio gain minus 1 (value lost after
hibernate)

Hold (asterisk) then click (mic) ATVV streaming stress test.

CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 29 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

Table 14 - rc_key_event_hid_ready Virtual Key Table

rc_key_event_rf_test

Key behavior Action

Last up (vol+) Increase TX power

Last up (vol-) Decrease TX power

Last up (up) Increase current channel number

Last up (down) Decrease current channel number

Table 15 - rc_key_event_rf_test Virtual Key Table

7.5 Bluetooth Key

The HID_remote uses HID service to send key codes to peer device. In this application, rc_hogp

is designed to interact with ble_hogpd and implements APIs for virtual key tables in rc_mmi_vkey

to send the key code . Figure 11 shows the hierarchy:

Figure 11 -HID API Hierarchy

HID_remote

rc_mmi/rc_mmi_vkey

rc_hogp

lib

ble_hogpd

CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 30 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

7.5.1 ble_hogpd

Ble_hogpd implements APIs and parameters for the application to easily configure and use the

HID service functionalities. There are four states with the type of ble_hogpd_state_t defined in this

module. It reflects current HID service status and can be obtained from ble_hopgd_get_peer_info()

API. Table 16 describes these states:

ble_hogpd_state_t Description

BLE_HOGPD_DISABLED ble_hogpd is registered. But the framework is not initialized by
atm_gap_start.

BLE_HOGPD_IDLE HID service is added after the framework initialization.

BLE_HOGPD_ENABLED HID service is enabled after Bluetooth link connection.

BLE_HOGPD_READY HID service is ready to use due to client characteristic
configuration descriptor(s)(CCCD) was(were) enabled.

Table 16 - ble_hogpd_state_t States

The configuration of HID service is accomplished after registering ble_hogpd module by calling

atm_gap_prf_reg(BLE_HOGPD_MODULE_NAME, P), where P is the parameter with type of

ble_hogpd_param_t provided by the application, including configure settings, support reports,

report maps and callback functions. Table 17 describes the APIs and callback functions:

API/callbacks Description

ble_hogpd_send_report Send a report to the HID host.

ble_hogpd_send_report_read
_cfm

Send a confirmation of HID host when received a read request
from HID host.

ble_hogpd_send_report_write
_cfm

Send a confirmation of HID host when received a write request
from host

ble_hogpd_report_claim Claim a report buffer for filling data. This report would be sent
later through ble_hogp_report_send API.

ble_hogpd_report_send Send a report to the HID host. This API is used to send the
report buffer claimed from ble_hogp_report_claim.

ble_hogpd_get_peer_info Get current state and CCCD mask status.

ble_hogpd_param_t::
state_ind

Callback function which is called when state is changed.

ble_hogpd_param_t::
report_read_req

Callback function which is called when received a read request
from HID host. The Application should respond by

CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 31 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

ble_hogpd_send_report_read_cfm API.

ble_hogpd_param_t::
report_write_req

Callback function which is called when received a write
request from HID host. The Application should respond by
ble_hogpd_send_report_write_cfm API.

Table 17 - ble_hogpd APIs and Callback Functions

7.5.2 rc_hogp

rc_hogp is part of the HID_remote application. It implements simple APIs for other application

modules in order to utilize functions of ble_hogpd. It also notifies rc_mmi when the callback function

was called from ble_hogpd. Table 18 shows the APIs and its caller:

API Description Caller

rc_hogp_param Get parameter for ble_hogpd registrations.
There are two input reports supported in this
example. One is usage page 0x0C and
another is usage page 0x07, please refer to
rc_hogp source file for more information.

rc_gap

rc_hogp_send_single_key Send Bluetooth key code. rc_mmi_vkey

rc_hogp_state Get current ble_hogpd state. rc_pdm

rc_hogp_get_audio_buf Get an audio buffer. rc_hidau

Table 18 - rc_hogp APIs and Caller

CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 32 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

7.6 IR Key

This application implements NEC IR format to demonstrate IR functionality. The rc_ir application

module is designed for rc_mmi_vkey to send the IR key code triggered by virtual key table callback

functions. The rc_ir uses the two drivers: nec_ir and ir. Nec_ir defines NEC IR format and uses ir

to generate corresponding signals. In these two layer design, users could redefine IR format by

replacing nec_ir with another module in other format. See Figure 12.

Figure 12 - IR Key Hierarchy

7.6.1 IR

The ir module utilizes timer and GPIO to provide the IR transport layer with configurable IR carrier

frequency and duty cycle The parameters were added by calling ir_init in its first arguments. After

initialization, the upper layer could register the signal sequence by calling ir_add_period to add in

many times with appropare time arguments. After waveform registration, the upper layer could use

send_ir_sequence to generate the signal sequence. After the signal is generated, the callback

function, which is registered in second arguments of ir_init, will be called to notify the upper layer.

Table 19 list the APIs which ir offers:

API Description

ir_init Initialize IR with dedicated carrier frequency and carrier clock duty cycle.
Arguments:

ir_prot IR setting. Only the freq and duty_cycle is necessary.

freq Carrier frequency in kHz.

duty_cycle Percentage number of carrier duty cycles.

HID_remote

rc_mmi/rc_mmi_vke

rc_ir

driver

nec_ir

ir

CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 33 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

Callback Callback function after the whole IR sequence is completed.

ir_add_period Add a period into sequence.

carrier_on If the value is true, a period of carrier frequency will be
added in the sequence.

period_us The period of time in μs.

reset_ir_sequence Clear the sequence registered by calling ir_add_period previously.

send_ir_sequence Start to send the sequence registered by calling ir_add_period. After the
whole sequence is sent out, callback function will be called.

Table 19 - IR APIs

7.6.2 Nec_ir

The nec_ir bases on the ir module to confirm NEC IR format. It implements 3 essential APIs for

the upper layer to use. Table 20 shows the APIs:

API Description

nec_ir_init Initialize NEC IR format and register callback.
Arguments:

cb_end Callback function after the sequence is completed.

nec_ir_send Send a NEC IR code.
Arguments:

address Address part of code.

cmd Command part of code.

repeat If the value is true, repeat code will send continuously after
the command is sent out. The repeat code is sent until
nec_ir_repeat_end is called.
Note: the callback is called after the command is sent
without repeat code or after repeat code is stopped.

nec_ir_repeat_end Stop the current ongoing repeat code.

Table 20 - Nec_ir APIs

CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 34 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

Variation of NEC IR is also supported in nec_ir by using compile options. Please refer to source

file for more information.

7.6.3 Rc_ir

Rc_ir is designed for two purposes. First is to accept multiple IR keys and send them sequentially.

Secondly is to support delay sent in each API call. Table 21 list its APIs:

API Description

Rc_ir_init Initialize nec_ir and internal queue.

Rc_ir_send Send IR key code. If an ongoing IR key exists, save it into the queue and
send after previous key codes are sent out.

Rc_ir_repeat_end Stop the repeat code since rc_ir always sends out the repeat code after
the key code was sent. This API should be called as many times as
rc_ir_send.

Table 21 - rc_ir APIs

CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 35 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

8 Voice Search

This example provides voice search functionality through ATVV or HID transmission. The ATVV

transmission uses ADPCM voice encoder. In HID transmission, different encoders can be used.

In this example, mSBC and ADPCM encoders are used.

● Audio input

Collect audio data from the microphone and compress it to conformed format, which are

the PDM driver, encoders and the corresponding application module called rc_pdm. Two

encoders are supported in this example.

○ ADPCM encoder

Interactive Multimedia Association (IMA) ADPCM encoder implemented in

adpcm_enc.
○ mSBC encoder

Iimplemented in sbc_enc_wrapper which is a wrapper APIs used to fill customer’s

own mSBC encoder.

● Audio transmission

Transmit encoded audio data to the TV device, which are Bluetooth API modules and its

corresponding application modules. Two Bluetooth transmissions are supported in this

example.

● Voice over HID

○ Bluetooth API: ble_hogpd

○ Application: rc_hidau

● Voice over ATVV

○ Bluetooth API: ble_atvvs

○ Application: rc_atvv

Figure 13 shows the hierarchy and data flows in ATVV, ADPCM over HID and mSBC over HID . CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 36 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

Figure 13 - Voice Search Function Hierarchy and Data Flows

8.1 Audio Input

This example uses the PDM microphone to collect 16 kHz by 16 bits PCM data and encode it

before sending via Bluetooth. The pdm driver provides simple APIs and configuration to control

ATM2/ATM3 PDM hardware.. The application layer module rc_pdm is designed to receive data

from pdm driver and compress it by calling encoders and handing it over to the audio transmission

part.

rc_pdm rc_hidau

driver

Profile APIs
lib

pdm

ble_hogpd adpcm_enc

rc_pdm rc_hidau

driver
Profile APIs

lib

pdm ble_hogpd

Sbc_enc_
wrapper

mSBC over HID

ADPCM over HID

ADPCM over ATVV

rc_pdm rc_atvv

driver

Profile APIs
lib

pdm

ble_atvvs adpcm_enc

audio input

audio transmission

audio input audio transmission

audio input

audio transmission

rc_hogp

rc_hogp

CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 37 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

8.1.1 PDM

The ATM2/ATM3 provides PDM microphone using two pins and supports three clock speeds

(500 KHz, 1 MHz, and 2 MHz). By adding -DPDM_CLOCK=<value>, -DPDM_CLK_IO=<value>

and -DPDM_DATA_IO=<value> options in the makefile CFLAGS variable, the pdm driver would

change to the corresponding configurations. Table 22 describes the options:

Options Description

PDM_CLK_IO Allowed values:
● 24: Use P24 as the PDM clock pin.
● 9: Use P9 as the PDM clock pin.

Pdm clock pin. If not set, default value is 24.

PDM_DATA_IO Allowed values:
● 25: Use P25 as the PDM data pin.
● 10: Use P10 as the PDM data pin.

Pdm data pin. If not set, default is P25.

PDM_CLOCK Allowed values:
● 0: Use 500 kHz as the frequency of the PDM clock.
● 1: Use 1 MHz as the frequency of the PDM clock.
● 2: Use 2 MHz as the frequency of the PDM clock.
● 3: Use 2 MHz as the frequency of the PDM clock.

Pdm clock rate. If not set, default is 2Mhz

Table 22 - PDM Microphone Configuration Options

The pdm driver provides 5 APIs: pdm_start, pdm_stop, pdm_pause, pdm_resume, and

pdm_is_paused. After calling the pdm_start, the pcm data will pass to the callback function which

is provided as an argument of the pdm_start API. See Table 23.

API Description

pdm_start Start collecting audio data from the PDM microphone with provided gain
value. After started, 32 samples will pass to callback function every 2 ms
Arguments:

● gain: gain value from 0 to 120
● feed_cb: callback function that received data
● ovf_cb: callback function called when overflow happens.

pdm_stop Stop collecting audio data.

CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 38 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

pdm_pause Pause the started collecting operation.

pdm_resume Resume the paused operation.

pdm_is_paused Check if the operation is paused

Table 23 - PDM Driver APIs

8.1.2 Encoders

8.1.2.1 Adpcm_enc

Adpcm_enc is a standard IMA ADPCM ¼ compression ratio encoder. There are three APIs in this

design: adpcm_reset, adpcm_get_index and adpcm_encode_sample. After adpcm_reset calling

at the beginning of the procedure, the application would start to call adpcm_encode_sample by

providing a 16 bits audio sample to produce nibble encoded data. See Table 24.

API Description

adpcm_reset Reset encoder.

adpcm_get_index Get the current ADPCM index for frame format usage.

adpcm_encode_sample Encode 16 bits PCM data to 4 bits.

Table 24 - ADPCM Encoder APIs

8.1.2.2 Sbc_enc_wrapper

The Sbc_enc_wrapper wrapper module provides two empty functions for customers to fill their

mSBC encoder or any other voice compression algorithm into its functions. In addition, there are

two macro definitions that need to be modified. Table 25 shows the descriptions of APIs and

Macros.

API / Macros Description

MSBC_AU_BUF_SIZE

The number of bytes that rc_pdm will receive to the
PCM audio buffer for every sbc_enc calling.

MSBC_ENC_SIZE The number of bytes that will be generated on every
sbc_enc calling.

sbc_init Encoder initialization function. It will be called once

CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 39 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

before every voice search starts.

param[out] void **context Provide the private opaque context object to the
caller.

sbc_enc Audio buffer encoding. This will be called when the
audio buffer is reached MSBC_AU_BUF_SIZE and.

param[in] void *context The private opaque context was from sbc_init.

param[in] uint8_t *src Buffer will be encoded. It contains pcm samples from
PDM with MSBC_AU_BUF_SIZE bytes.

param[out] uint8_t *dst Buffer which is used to store encoded data. Its size is
MSBC_EN_SIZE bytes.

Table 25 - Sbc_enc_wrapper Module APIs and Macros

8.1.3 Rc_pdm

Rc_pdm is part of the HID_remote application. Rc_pdm receives PCM samples from PDM driver

and uses encoders to compress it and sends them to audio transmission modules, which are

rc_atvv and rc_hidau. The features are shown on Table 26.

Feature Description

Gain adjustment PDM_DEFAULT_GAIN definition to specify default gain. If it is not
defined, default is 85.

Use rc_pdm_gain_adjust API to adjust.

PDM microphone power
switch control

PDM_IO definition (-DPDM_IO = xx) to specify GPIO for power
switch control. Default is 22 if not defined.

Audio data process Encode PCM data and provide it to the application Bluetooth
module.

● ATVV:
adpcm_encode_sample()->rc_atvv_fill_pcm().

● ADPCM over HID:
adpcm_encode_sample()->rc_hidau_fill_pcm().

● mSBC over HID:
sbc_enc()->rc_hidau_frame_ptr_move().

Support 8 K PCM mode.

CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 40 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

Stop Bluetooth transmit when PCM overflow
● ATVV: rc_atvv_stop_search().
● Over HID: rc_hidau_stop_search().

PCM data profiling
● PCM frequency and quantity.

● CPU utilization of encoder.

Table 26 - rc_pdm Features.

Table 27 describes the options:

Options Description

PDM_DEFAULT_GAIN Allowed values: 0 to 120.

Pdm gain. If not set, default value is 85.

PDM_IO Allowed values: Any GPIO number.

Pdm power switch GPIO pin. If not set, default is 22.

Table 27 - rc_dpm Options

8.2 Audio Transmission

8.2.1 Voice over ATVV

This section describes the ATVV related modules and sequence charts.

8.2.1.1 ATVV modules

8.2.1.1.1 ble_atvv

ble_atvv implements essential profile APIs and configurations of the ATVV profile for upper

layers to design their own voice search flows. By adding -

DATVV_SUPPORTED_CODEC=<value>, -DATVV_AUDIO_TIMEOUT_MS=<value> and -

ATVV_AUDIO_TIMEOUT_MS=<value> options in the makefile CFLAGS variable, the ble_atvv

would change to the corresponding configurations. Table 28 describes the options:

Option Description

ATVV_SUPPORTED_CODEC

Allowed values:
● CODEC_ADPCM_8K_16BIT: Support 8 kHz ADPCM

CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 41 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

only.
● CODEC_ADPCM_8K_16K_16BIT: Support 8 kHz/16

kHz ADPCM.

Supported codec. If not set, the default value is
CODEC_ADPCM_8K_16K_16BIT.

ATVV_AUDIO_TIMEOUT_MS Allowed values are from 0 to 65535
Recommended values are bigger than 5000.

Audio timeout value in milliseconds. If not set, the default
value would be 10000 (10 seconds).

ATVV_MAX_AUDIO_PACKET Allowed values are from 1 to 255.

Maximal number of unsent audio packets. If not set, the
default is 48.

Table 28 - ATVV Configuration Options

Like other profile APIs in SDK, ble_atvv is registered by calling atm_gap_prf_reg() API with

BLE_ATVVS_MODULE_NAME macro as its first argument and profile parameters as its second

argument. In this example, atm_gap_prf_reg() was called in rc_gap_init() and the profile

argument is derived from the return value of rc_atvv_param() in rc_atvv. There are 3 profile

parameters defined as type of ble_atvvs_param_t. All parameters are callback functions. There

are 10 APIs defined in ble_atvv. Table 29 describes the 13 APIs and Table 30 describs 3 callback

functions:

API Description

ble_atvvs_start_search Send START_SEARCH to ATV.

ble_atvvs_dpad_select Send DPAD_SELECT to ATV.

ble_atvvs_audio_start Send AUDIO_START to ATV.

ble_atvvs_audio_stop Send AUDIO_STOP to ATV.

ble_atvvs_mic_open_error Send MIC_OPEN_ERROR to ATV.

ble_atvvs_claim_audio_buf Get ATVV audio buffer which is used to carry ATVV audio
frame.

ble_atvvs_send_audio_buf Send ATVV audio buffer to ATV.

ble_atvvs_free_audio_buf Free ATVV audio buffer.

ble_atvvs_state Get current ATVV state.

CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 42 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

ble_atvvs_asst_model Get negotiated assistant model with current ATV

ble_atvvs_reg_replish_callback Register callback function for indication of buffer replenish.
If the callback function was registered, it will be called when
every buffer is sent out.

Table 29 - ATVV APIs

 Callback Functions Description

cb_atvv_ready Called when ATVV is ready or not ready. When all the client
characteristic configuration descriptions are enabled, ATVV will
become ready.

cb_atvv_mic_open_ind Called when received ATV_MIC_OPEN from ATV.

cb_atv_mic_close_ind Called when received ATV_MIC_CLOSE from ATV.

Table 30 - ATVV Callback Functions

Note: The AUDIO_STOP, AUDIO_START, DPAD_SELECT, START_SEARCH and MIC_OPEN_ERROR

are defined in the ATVV specification.

8.2.1.1.2 rc_atvv

rc_atvv is part of the HID_remote application. It implements simple APIs to rc_gap, rc_mmi,
rc_mmi_vkey and rc_pdm for ATVV control flow and data transfer. It also notifies rc_mmi when

the callback function was called from ble_atvv. Table 31 shows the APIs and its caller:

API Description Caller

rc_atvv_param Get parameter for ble_atvv registrations rc_gap

rc_atvv_start_search Start audio search. rc_mmi_vkey

rc_atvv_stop_search Stop audio search. rc_pdm

rc_atvv_dpad_select Send DPAD_SELECT to TV rc_mmi_vkey

rc_atvv_fill_pcm Fill encoded audio sample byte to the current
audio frame buffer which is allocated from

ble_atvvs_claim_audio_buf. And the current

audio frame buffer will be sent out by calling
ble_atvvs_send_audio_buf when the frame
buffer is full.

rc_pdm

rc_atvv_is_8k Return whether the current microphone is
open in 8K mode.

rc_mmi

CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 43 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

rc_atvv_is_legacy_model Return whether legacy model is used rc_mmi_vkey

rc_atvv_is_htt_model Return whether HTT model is used rc_mmi_vkey

rc_atvv_init Initialize internal events and register the
replenish callback to ble_atvv.

rc_mmi

Table 31 - Rc_atvv APIs and Callers

8.2.1.2 ATVV Sequence Chart

The overall procedures are accomplished with cooperation of rc_mmi, rc_mmi_vkey, rc_atvv,
rc_pdm and ble_atvv. This section lists the mapping between sequences and implementation.

8.2.1.2.1 Initialization (0.4e)

After the Remote device is paired and connected, Android TV Device will send it a command to

get capabilities of the Remote. The Remote should then respond back with its capabilities.

Figure 14 shows the sequence:

Figure 14 - ATVV Initialization Sequence

Table 32 list the locations of mapping points (red circles in Figure 14):

CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 44 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

Mapping Point Module Location

① ble_atvv atvvs_atvv_tx_recv_ind_handler()::case TX_GET_CAPS

② ble_atvv atvvs_atvv_tx_recv_ind_handler() →

ble_atvv ble_atvvs_send_ctl()

The capability is responded based on the ATVV_SUPPORTED_CODEC.

Table 32 - ATVV Initialization Sequence Mapping Points

8.2.1.2.2 Voice search (0.4e)

The user will initiate the voice search by pressing the microphone button. The Remote will send

a key event to the Android TV Device. It will also send the START_SEARCH to Android TV. When

the Android TV Device is ready to start receiving data from the Remote it will send

ATV_MIC_OPEN to Remote. If the ATV_MIC_OPEN is not accepted by Remote, the Remote will

send MIC_OEPN_ERROR to the Android TV Device. If the ATV_MIC_OPEN is accepted by Remote,

the Remote will send AUDIO_START then periodically send audio frames (AUDIO_DATA) and

AUDIO_SYNC to the Android TV Device. When the Android TV Device has detected the user has

stopped speaking it will send ATV_MIC_CLOSE to Remote and Remote will send AUDIO_START

CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 45 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

back to the Android TV Device. Figure 15 shows the sequence:

Figure 15 - ATVV Voice Search Sequence

Table 33 list the locations of red circles from Figure 15:

CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 46 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

Mapping Point Module Location

① rc_mmi_vkey rc_send_rpt() →

rc_hogp rc_hogp_send_single_key(BT_MIC)

② rc_mmi_vkey rc_send_rpt() →

rc_atvv rc_atvv_start_search() →

ble_atvv ble_atvvs_start_search()

③ ble_atvv Atvvs_atvv_tx_recv_ind_handler()::case TX_MIC_OPEN →

rc_atvv rc_atvv_mic_open_ind() →

rc_mmi rc_mmi_transition(MMI_OP_OPEN_MIC) →

rc_mmi mmi_s_open_mic() →

rc_pdm rc_pdm_device_pwr_on()

Delay for RC_MMI_OPEN_MIC_DELAY_CS centiseconds

rc_mmi rc_mmi_mic_ctl_timer_msg_ind() →

rc_pdm rc_pdm_start(RC_PDM_NORMAL, rc_atvv_is8k())

④ rc_atvv rc_atvv_mic_open_ind() →

ble_atvv ble_atvvs_mic_open_error()

⑤ rc_atvv rc_atvv_mic_open_ind() →

ble_atvv ble_atvvs_audio_start()

⑥ rc_pdm rc_pdm_event() →

CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 47 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

rc_atvv Rc_atvv_fill_pcm() →

ble_atvv ble_atvvs_send_audio_buf()

⑦ ble_atvv ble_atvvs_send_audio_buf() →

ble_atvv atvv_ctl_sync()

⑧ ble_atvv Atvvs_atvv_tx_recv_ind_handler()::case TX_MIC_CLOSE →

rc_atvv rc_atvv_mic_close_ind() →

rc_pdm rc_pdm_stop()

⑨ ble_atvvs Atvvs_atvv_tx_recv_ind_handler()::casse TX_MIC_CLOSE
→

ble_atvvs atvv_ctl_audio_stop()

Table 33 - Voice Search Sequence Mapping Points

8.2.1.2.3 Initialization (1.0)

In ATVV version 1.0, the Android TV device and the Remote will negotiate the supported

assistant interaction models with the get capability command after paired and connected. There

are currently three models introduced: On-request, Press-to-talk (PTT) and Hold-to-talk (HTT).

The On-request model is also called the legacy model and must be supported by both sides. If

the Android TV device and the Remote both support either PTT or HTT model, the Remote can

then arbitrarily decide which model should be used. In current implementation, the Remote will

prefer the HTT over the PTT model.

8.2.1.2.4 Voice search (1.0)

In the legacy model, the Remote will notify about every assistant button pressed event by

sending a START_SEARCH message and another KEYCODE_ASSIST HID key event to the

Android TV. The Android TV device can then decide whether the audio data is requested or not

by sending a MIC_OPEN command. The Remote device should keep the microphone open until

a MIC_CLOSE command is received or the timeout event occurs before a MIC_EXTEND

message is received.

In the PTT and HTT interaction model, the KEYCODE_ASSIST won’t be sent to the Android TV

CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 48 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

over the HID interface after the assistant button is pressed. The Remote device will directly start

to transfer the audio data without waiting for the request message from the Android TV. The

audio stream will last until the timeout event occurs. However The TV side can still proactively

stop the audio data by sending the MIC_CLOSE command once it gets enough information or

detects the user is not speaking. The audio stream will also stop immediately if the assistant

button is released in the HTT model.

8.2.2 Voice over HID (VoHID)

This section describes the modules related to voice over HID and sequence flow chart.

8.2.2.1 VoHID Modules

8.2.2.1.1 ble_hogpd

Ble_hogpd implements essential profile APIs and configurations of the HID profile for upper

layers to interact with the HID host. Please refer to 7.5.1 ble_hogpd for more details. The VoHID

uses ble_hogpd_report_claim and ble_hogpd_report_send to accomplish audio transmission.

Please refer to the next sections for more details.

8.2.2.1.2 rc_hogpd

rc_hogp is part of the HID_remote application. It implements simple APIs for other application

modules in order to utilize functions of ble_hogpd. Please refer to 7.5.2 rc_hogp for more details.

8.2.2.1.3 rc_hidau

rc_hidau is part of the HID_remote application. It implements simple APIs to rc_mmi,
rc_mmi_vkey and rc_pdm for VoHID control flow and data transfer. Table 34 shows the APIs and

its caller:

API Description Caller

rc_hidau_start_search Start audio search. rc_mmi_vkey

rc_hidau_stop_search Stop audio search. rc_mmi_vkey

rc_hidau_frame_get Get the current audio frame buffer and its
residue. The audio frame buffer is allocated

by rc_hogpd_get_audio_buf.

rc_pdm

rc_hidau_frame_ptr_move Move the current audio frame buffer pointer.
It’s called when an amount of audio samples
have been filled into the frame buffer. When
the pointer is moved to the end, it will be sent
out by calling ble_hogpd_report_send.

rc_pdm

rc_hidau_fill_pcm Fill encoded audio sample byte to the current rc_pdm

CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 49 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

audio frame buffer which is allocated from

rc_hogpd_get_audio_buf. And the current

audio frame buffer will be sent out by calling
ble_hogpd_report_send when the frame
buffer is full.

rc_hidau_init Initialize internal events and timers. rc_mmi

Table 34 - rc_hidau APIs and Callers

The HID_AU_REPORT_SIZE value is defined for byte number in an audio frame buffer. The

default values of ADPCM and mSBC are 128 and (MSBC_ENC_SIZE *2) respectively.

8.2.2.2 VoHID Sequence Chart

The overall procedures are accomplished with cooperation of rc_mmi, rc_mmi_vkey, rc_hidau,
rc_hogp, rc_pdm and ble_hogpd.

8.2.2.2.1 Initialization

After the Remote device is paired and connected, TV Device will make HID ready to use by

enabling the Client Characteristic Configuration Descriptor of audio input report. After HID is ready,

the voice search function is enabled.

8.2.2.2.2 Voice search

The user will initiate the voice search by clicking the microphone button. The Remote will start

sending audio reports to TV. And the user clicking the microphone button again will stop sending

the audio reports. Figure 16 shows the sequence. CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 50 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

Figure 16 - VoHID Voice Search Sequence

Table 35 list the locations of red circles in Figure 16:

Mapping
Point

Location Module

① rc_send_rpt(...) rc_mmi_vkey

➤ rc_hidau_start_search() rc_hidau

HID_AUDIO_OPEN_MIC_DELAY_MS milliseconds

rc_mmi_transition(MMI_OP_OPEN_MIC) rc_mmi

➤ mmi_s_open_mic() rc_mmi

➤ ➤ rc_pdm_device_pwr_on() rc_pdm

➤ ➤ rc_mmi_open_mic() rc_mmi

Remote

Remote

TV

TV

Search button
pressed

Search button
pressed

Audio Report

Audio Report

Audio Report

Audio Report

...

1

2

3

CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 51 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

RC_MMI_OPEN_MIC_DELAY_CS centiseconds

rc_mmi_mic_ctl_timer_msg_ind(...) → rc_mmi

➤ rc_pdm_start(RC_PDM_NORMAL, false) rc_pdm

②

ADPCM over HID

rc_pdm_event(...) rc_pdm

➤ adpcm_encode_sample(...) adpcm_enc

➤ rc_hidau_fill_pcm(...) rc_hidau

➤ ➤ ble_hogpd_report_send(...) ble_hogpd

mSBC over HID

rc_pdm_event(...) rc_pdm

➤ rc_hidau_frame_get(...) rc_hidau

➤ sbc_enc(...)

sbc_enc_wrapper

➤ rc_hidau_frame_ptr_move(...) rc_hidau

➤ ➤ ble_hogpd_report_send(...) ble_hogpd

Table 35 - Voice Search Sequence Mapping Points

CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 52 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

9 LED

LED control is implemented by using led_blinking module. GPIO and a timer are used to provide

a set of Application Programming Interfaces (APIs) for the rc_mmi. It was called in the transition

function of the rc_mmi state machine. Table 36 shows the LED definition in each mmi state.

Device State LED Behavior

RECONNECT LED blinking with 100 ms interval

PAIRING LED blinking with 250 ms interval

CONNECTED When key pressed, LED on for 100 ms then off

VOICE SEARCH When key pressed, LED on for 100 ms then off

HIBERNATE LED off

Table 36 - LED Behavior

CONFIDENTIAL

HID_Remote Example Application Note

PRELIMINARY

CONFIDENTIAL 53 December 22, 2021
 Doc. No. ATMxxxx-ANHID-0052

ATMOSIC TECHNOLOGIES - DISCLAIMER

This product document is intended to be a general informational aid and not a substitute for any literature or labeling
accompanying your purchase of the Atmosic product. Atmosic reserves the right to amend its product literature at
any time without notice and for any reason, including to improve product design or function. While Atmosic strives
to make its documents accurate and current, Atmosic makes no warranty or representation that the information
contained in this document is completely accurate, and Atmosic hereby disclaims (i) any and all liability for any errors
or inaccuracies contained in any document or in any other product literature and any damages or lost profits resulting
therefrom; (ii) any and all liability and responsibility for any action you take or fail to take based on the information
contained in this document; and (iii) any and all implied warranties which may attach to this document, including
warranties of fitness for particular purpose, non-infringement and merchantability. Consequently, you assume all
risk in your use of this document, the Atmosic product, and in any action you take or fail to take based upon the
information in this document. Any statements in this document in regard to the suitability of an Atmosic product for
certain types of applications are based on Atmosic’s general knowledge of typical requirements in generic applications
and are not binding statements about the suitability of Atmosic products for any particular application. It is your
responsibility as the customer to validate that a particular Atmosic product is suitable for use in a particular
application. All content in this document is proprietary, copyrighted, and owned or licensed by Atmosic, and any
unauthorized use of content or trademarks contained herein is strictly prohibited.

Copyright ©2021 by Atmosic Technologies. All rights reserved.

www.atmosic.com

CONFIDENTIAL

	HID_Remote Example Application Note
	Revision History
	Table of Contents
	List of Figures
	List of Tables
	1 Overview
	1.1 Quick Start
	1.2 Hierarchy and Files

	2 Building Application
	2.1 Devices
	2.2 Features
	2.3 Build Combinations

	3 State Machines
	3.1 MMI State Descriptions
	3.2 GAP State Descriptions

	4 Power Management
	5 Hardware Setup
	5.1 Pin Setup
	5.2 Configure Flash Layout

	6 Bluetooth Parameters
	6.1 Timeout Parameters
	6.1.1 Timeout after HID ready
	6.1.2 Timeout after connected
	6.1.3 Timeout to poll battery capacity

	6.2 GAP Parameters
	6.2.1 Advertisement
	6.2.2 Connection parameters and negotiation

	6.3 Device Information Service

	7 User Input Management
	7.1 Keyboard
	7.2 Atm_key
	7.3 Rc_mmi_vkey
	7.3.1 Key index, virtual key number and key codes

	7.4 Virtual Key Tables
	7.5 Bluetooth Key
	7.5.1 ble_hogpd
	7.5.2 rc_hogp

	7.6 IR Key
	7.6.1 IR
	7.6.2 Nec_ir
	7.6.3 Rc_ir

	8 Voice Search
	8.1 Audio Input
	8.1.1 PDM
	8.1.2 Encoders
	8.1.2.1 Adpcm_enc
	8.1.2.2 Sbc_enc_wrapper

	8.1.3 Rc_pdm

	8.2 Audio Transmission
	8.2.1 Voice over ATVV
	8.2.1.1 ATVV modules
	8.2.1.1.1 ble_atvv
	8.2.1.1.2 rc_atvv
	8.2.1.2 ATVV Sequence Chart
	8.2.1.2.1 Initialization (0.4e)
	8.2.1.2.2 Voice search (0.4e)
	8.2.1.2.3 Initialization (1.0)
	8.2.1.2.4 Voice search (1.0)

	8.2.2 Voice over HID (VoHID)
	8.2.2.1 VoHID Modules
	8.2.2.1.1 ble_hogpd
	8.2.2.1.2 rc_hogpd
	8.2.2.1.3 rc_hidau

	8.2.2.2 VoHID Sequence Chart
	8.2.2.2.1 Initialization
	8.2.2.2.2 Voice search

	9 LED

